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Abstract
We review the application of field-theoretic renormalization group (RG)
methods to the study of fluctuations in reaction–diffusion problems. We
first investigate the physical origin of universality in these systems, before
comparing RG methods to other available analytic techniques, including
exact solutions and Smoluchowski-type approximations. Starting from the
microscopic reaction–diffusion master equation, we then pedagogically detail
the mapping to a field theory for the single-species reaction kA → �A (� < k).
We employ this particularly simple but non-trivial system to introduce the
field-theoretic RG tools, including the diagrammatic perturbation expansion,
renormalization and Callan–Symanzik RG flow equation. We demonstrate how
these techniques permit the calculation of universal quantities such as density
decay exponents and amplitudes via perturbative ε = dc − d expansions with
respect to the upper critical dimension dc. With these basics established,
we then provide an overview of more sophisticated applications to multiple
species reactions, disorder effects, Lévy flights, persistence problems and the
influence of spatial boundaries. We also analyse field-theoretic approaches to
non-equilibrium phase transitions separating active from absorbing states. We
focus particularly on the generic directed percolation universality class, as well
as on the most prominent exception to this class: even-offspring branching and
annihilating random walks. Finally, we summarize the state of the field and
present our perspective on outstanding problems for the future.
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1. Introduction

Fluctuations and correlations in statistical systems are well known to become large in the
vicinity of a critical point. In this region, fluctuations have a profound influence on
the macroscopic properties of the system, leading to singular thermodynamic behaviour
characterized by universal critical exponents and scaling functions. These power-law
singularities can be traced to an underlying emerging symmetry, namely scale invariance:
at the critical point, the system possesses a diverging correlation length. Therefore
renormalization group (RG) methods, which explicitly address the behaviour of physical
observables under scale transformations, have been employed with considerable success in
describing critical fluctuations. The renormalization group provides a natural conceptual
framework for explaining the occurrence of critical behaviour, the emergence of universality
and the classification of different systems in terms of universality classes. Moreover, RG
tools (especially in conjunction with series resummations or numerical implementations) also
enable quantitative, controlled calculations of universal properties.

Most successful applications of the renormalization group address systems in thermal
equilibrium, where the Boltzmann–Gibbs probability distribution provides a solid foundation
for explicit calculations. However, many systems in nature cannot be cast into even an
approximative equilibrium description, and a large variety of non-equilibrium systems, both
relaxational and driven, also exhibit critical behaviour, which should presumably also be able
to be analysed by RG techniques. Unfortunately, even for non-equilibrium steady states,
we presently lack a general statistical framework to construct the corresponding probability
distributions and hence obtain the relevant macroscopic quantities. Consequently, there are
relatively few cases where such explicit calculations can be developed, at least to date. For
systems that can be represented in terms of stochastic partial differential equations of the
Langevin type, there exists a well-established mapping to a field-theoretic representation
[1]. However, this inherently coarse-grained, mesoscopic approach relies on an a priori
identification of the relevant slow degrees of freedom. Moreover, far from equilibrium there
are no Einstein relations that constrain the generalized stochastic forces or noise terms in
these Langevin equations. Thus, although the functional form of the noise correlations may
crucially affect the long-time, long-wavelength properties, it often needs to be inferred from
phenomenological considerations, or simply guessed.

Fortunately, in certain cases an alternative approach exists which allows these fundamental
difficulties to be at least partially overcome. This method relies on the introduction of a
‘second quantized’ ladder operator formulation [2, 3] for certain classical master equations,
and on the coherent state representation to construct the statistical path integral [4]. This
in principle permits a mapping to a field theory starting directly from a microscopically
defined stochastic process without invoking any further assumptions or approximations beyond
taking the appropriate continuum limit. In this way, the difficulties of identifying the slow
variables, and of guessing the noise correlations, are circumvented, and a field theory can
be straightforwardly derived. Subsequently, the entire standard field-theoretic machinery can
then be brought to bear, and progress made on understanding the role of fluctuations, and on
identifying and computing universal quantities. (As a cautionary note we add, though, that
the above-mentioned continuum limit may not always be trivial and benign, and occasionally
additional physical insight needs to be invoked to obtain an appropriate effective field theory
description.) In this overview, we will concentrate on the application of field-theoretic RG
techniques to the non-equilibrium dynamics of reaction–diffusion systems. Such models
consist of classical particles on a lattice, which evolve by hopping between sites according to
some specified transition probabilities. The particles can also interact, either being created or
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destroyed on a given site following prescribed reaction rules (for general reviews, see [5, 6]).
However, in order to successfully employ RG methods to these systems, one necessary
feature is a mean-field theory that is valid for some parameter range, typically when the spatial
dimension d exceeds an upper critical dimension dc. This property renders the renormalization
group flows accessible within perturbation theory, via a dimensional expansion in ε = dc − d.
For reaction–diffusion models this requirement is usually easily satisfied, since the mean-field
theory is straightforwardly given by the ‘classical’ rate equations of chemical kinetics.

It is the purpose of this topical review to provide an introduction to the methods of the field-
theoretic RG in reaction–diffusion systems, and to survey the body of work that has emerged
in this field over the last decade or so. Other theoretical and numerical simulation approaches
will not be as systematically covered, though various results will be mentioned as the context
requires. A review by Mattis and Glasser [7] also concerns reaction–diffusion models via
Doi’s representation, but does not address the RG methods presented here. Recent overviews
by Hinrichsen [8] and Ódor [9] are primarily concerned with classifying universality classes
in non-equilibrium reaction–diffusion phase transitions via Monte Carlo simulations. We will
also touch on this topic in our review (for brief summaries of the RG approach to this problem,
see also [10, 11]). The field theory approach to directed and dynamic isotropic percolation,
as based on a mesoscopic description in terms of Langevin stochastic equations of motion, is
discussed in depth in [12]. As with the previous reviews, our presentation will concentrate on
theoretical developments. Unfortunately, experiments investigating fluctuations in reaction–
diffusion systems are deplorably rare. Three notable exceptions are: (i) the unambiguous
observation of a t−1/2 density decay (in an intermediate time window) for the diffusion-limited
fusion process A + A → A, as realized in the kinetics of laser-induced excitons in quasi-
one-dimensional N(CH3)4 MnCl3 (TMMC) polymer chains [13]; (ii) the demonstration of
non-classical A+B → C kinetics, with an asymptotic t−3/4 density decay in three dimensions
in a calcium/fluorophore system [14] and (iii) the identification of directed percolation critical
exponents in studies of spatio-temporal intermittency in ferrofluidic spikes [15].

The review is organized as follows. The following section provides a basic introduction
to reaction–diffusion models and the various approaches employed for their investigation.
Section 3 describes the mapping of classical reaction–diffusion models onto a field theory,
while section 4 presents the RG techniques in the context of the kA → �A (� < k) annihilation
reaction. A selection of other single-species reactions is treated in section 5, where variations
such as Lévy flight propagation and the influence of disorder are also considered. In addition,
this section covers the two-species annihilation reaction A + B → 0 with homogeneous and
segregated initial conditions, as well as with disorder and shear flow. Other multi-species
reactions that exhibit similar asymptotic decay are also discussed here. Section 6 deals
with directed percolation, branching–annihilating random walks and other examples of non-
equilibrium phase transitions between active and inactive/absorbing states. The influence of
spatial boundaries is also addressed here. Finally, in section 7, we give our perspective on
open problems for future studies.

2. Basic features of reaction–diffusion systems

2.1. Models

Our goal is to describe local reactions, of either a creation or annihilation type, for which the
particles rely on diffusion (or nearest-neighbour hopping) to be brought within reaction range.
Hence, these processes are often referred to as diffusion-limited reactions. Some single-species
examples are the pair annihilation reaction A + A → 0, where ‘0’ denotes a chemically inert
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compound, and coagulation A+A → A. The diffusive particle propagation can be modelled as
a continuous- or discrete-time random walk, either on a lattice or in the continuum. Reactions
occur when particles are within some prescribed range; on a lattice, they can also be required
to occupy the same lattice site. In such systems a single lattice site may be subject to an
occupancy restriction (to, say, at most nmax particles per site) or not, and, of course, the lattice
structure can be varied (e.g., square or triangular in two dimensions). Computer simulations
typically employ discrete-time random walks, whereas, for example, the analysis of the
two-species pair annihilation reaction A + B → 0 by Bramson and Lebowitz (discussed in
section 2.4) uses a continuous-time random walk on a lattice with unlimited occupation
number, but also with an infinite reaction rate so that no site simultaneously contains A and B
particles [16]. With such a variety of microscopic models to represent a single reaction type,
it is important to determine which features are universal as opposed to those properties that
depend on the specific implementation of the processes under consideration.

The most general single-species reaction–diffusion system can be described by means
of a set of reaction rules, the ith of which reads kiA → �iA, with non-negative integers ki ,
�i , and where each process occurs with its own rate or probability per time step. Note that
this includes the possibility of reversible reactions, for example 2A ↔ A as represented by
(k1, �1) = (2, 1) and (k2, �2) = (1, 2). Similarly, directed percolation, which defines a broad
universality class of non-equilibrium phase transitions between active and absorbing states,
can be described by the reactions A + A ↔ A and A → 0, where the critical point is reached
through tuning the rates of the A → (0, 2A) reactions (see section 6).

More generic in chemical systems are two-species processes, for example A + B → 0,
which requires particles of different types to meet in order for the reaction to occur. The
different particle species may or may not have the same diffusion constant. A general multi-
species reaction may be written as

∑
j kjAj → ∑

j �jAj , where Aj labels the j th species,
and the most general reaction model is then a set of such multi-species processes.

With such generality available, it is possible to construct both driven and relaxational
systems. The former case, which includes directed percolation, typically comprises both
reactions that increase and decrease the particle number. Depending on appropriate
combinations of the corresponding reaction rates, the ensuing competition can, in the
thermodynamic limit and at long times, either result in an ‘active’ state, characterized by
a finite steady-state density of particles, or a situation that evolves towards the empty lattice.
For reactions that require at least the presence of a single particle, the latter case constitutes
an ‘inactive’ or ‘absorbing’ state with vanishing fluctuations from which the system can never
escape. The continuous transition from an active to an absorbing state is analogous to a second-
order equilibrium phase transition, and similarly requires tuning of appropriate reaction rates
as control parameters to reach the critical region. As in equilibrium, universality of the critical
power laws emerges as a consequence of the diverging correlation length ξ , which induces scale
invariance and independence in the critical regime of microscopic parameters. Alternatively,
relaxational cases, such as the single-species pair annihilation reaction A + A → 0, are
ultimately decaying to an absorbing state: the empty lattice (or a single left-over particle).
However, here it is the asymptotic decay law that is of interest, and the scaling behaviour of
the correlation functions in the universal regime that is often reached at large values of the
time variable t.

2.2. The origin of universality in relaxational reactions

Reaction–diffusion models provide a rather intuitively accessible explanation for the origin
of universality. The large-distance properties of random walks are known to be universal,
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depending only on the diffusion constant, a macroscopic quantity. Decay processes, such as
A + A → 0, eventually result in the surviving particles being separated by large distances,
so at late times the probability of a pair of particles diffusing to close proximity takes on a
universal form. For spatial dimension d � 2 random walks are re-entrant, which enables a
pair of particles to find each other with probability 1, even if they are represented by points in
a continuum. Therefore, at sufficiently long times the effective reaction rate will be governed
by the limiting, universal probability of the pair diffusing from a large to essentially a zero
relative separation. As it turns out, this asymptotically universal reaction rate is sufficient
to fully determine the entire form of the leading density decay power law, that is, both its
exponent and the amplitude become universal quantities.

The situation is different in dimensions d > 2: the probability for the pair of particles
to come near each other still has a universal form, but even in close proximity the reactants
actually meet with probability zero if they are described as point particles in a continuum.
For any reaction to occur, the particles must be given a finite size (or equivalently, a finite
reaction range), or be put on a lattice. Since the ensuing finite effective reaction rate then
clearly depends on the existence and on the microscopic details of a short-distance (ultraviolet)
regulator, universality is (at least partially) lost.

Consequently, for any two-particle reaction, such as A + A → (0, A) or A + B → 0, we
infer the upper critical dimension to be dc = 2. There is some confusion on this point in the
literature for the two-species process A + B → 0, for which sometimes d = 4 is claimed to
be the upper critical dimension. This is based on the observation that for equal initial A and
B particle densities the asymptotic density power-law decay becomes ∼t−d/4 for d < 4 and
t−1 for d � 4. However, this behaviour is in fact fully exhibited within the framework of the
mean-field rate equations, see section 2.3. Thus, d = 4 does not constitute an upper critical
dimension in the usual sense (namely, that for d < dc fluctuations are crucial and are not
adequately captured through mean-field approximations). Yet surprisingly, in the two-species
pair annihilation process there occurs no marked qualitative change at two dimensions for the
case of equal initial densities. However, the critical dimension dc = 2 strongly impacts the
scenario with unequal initial densities, where the minority species decays exponentially with
a presumably non-universal rate for all d > 2, exhibits logarithmic corrections in dc = 2 and
decays according to a stretched exponential law [16, 17] with universal exponent and probably
also coefficient [18, 19] for d < 2 (see section 4.3). The critical dimension is similarly
revealed in the scaling of the reaction zones, which develop when the A and B particles are
initially segregated (section 5.2).

The upper critical dimension is not always 2 in diffusion-limited processes. For three-
particle reactions, such as 3A → 0, the upper critical dimension becomes dc = 1, via the same
mechanism as described above: for three-point particles to meet in a continuous space, they
must be constrained to one dimension. For a kth order decay reaction kA → �A (with � < k),
the upper critical dimension is generally found to be dc = 2/(k − 1) [20]. Consequently,
mean-field descriptions should suffice in any physical dimension d � 1 for k > 3. However,
this simple argument is not necessarily valid once competing particle production processes are
present as well. For example, for the universality class of directed percolation that describes
generic phase transitions from active to absorbing states, the upper critical dimension is
shifted to dc = 4, as a result of combining particle annihilation and branching processes (see
section 6). As mentioned before, universal features near the transition emerge as a consequence
of a diverging correlation length, just as for equilibrium critical points.

Lattice occupation restrictions typically do not affect universality classes for relaxational
reactions, since the asymptotically low densities essentially satisfy any occupation restrictions.
A few exceptions are noteworthy:
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(i) The asymptotic decay law in the A + B → 0 reaction with equal A and B densities and in
d < 4 dimensions depends on the fluctuations in the initial conditions, which in turn are
expected to be sensitive to lattice occupation restrictions [21, 22].

(ii) In systems with purely second- or higher-order reactions, site occupation restrictions
crucially affect the properties of the active phase and the phase transition that separates it
from the absorbing state [23–25], see section 6.

(iii) One-dimensional multi-species systems can be constructed in which the spatial ordering
of the reaction products specified by the model, which cannot subsequently be changed
by the dynamics, does affect the asymptotic properties [26, 27].

2.3. Rate equations

In general, kinetic rate equations are obtained by taking the rate of change of a given species’
density or concentration to be proportional to the appropriate product of the reactant densities
and the reaction rate. This effectively constitutes a factorization of higher-order correlation
functions (the joint probability of finding a given number of reactants at the same location at
a given time), and hence corresponds to a mean-field type approximation. For example, in
the process kA → �A the probability of a reaction is assumed to be proportional to a(t)k ,
where a(t) denotes the overall (mean) A particle density at time t. Such a description that
entirely neglects correlations and spatial variations is in general justified only if the reactants
remain uncorrelated and homogeneously distributed (and well-mixed for different participating
species) throughout the system’s temporal evolution. The corresponding rate equation then
reads

∂ta(t) = −(k − �)λa(t)k, (1)

where λ represents a reaction rate constant, and the loss rate is proportional to k − �, the
number of particles removed by the reaction. We assume that � < k, so ∂ta is negative.
Note that in contrast to k, the integer variable � does not enter the functional form of the rate
equation. With an initial density a0, equation (1) is solved by

a(t) = a0[
1 + ak−1

0 (k − 1)(k − �)λt
]1/(k−1)

, (2)

which for t � 1
/
λak−1

0 leads to the asymptotic decay a ∼ (λt)−1/(k−1), independent of the
initial density a0.

Next consider an inhomogeneous system with a local density a(x, t) that is assumed
to be slowly varying on the scale of the capture radius or lattice size. The rate equation
approximation for uncorrelated reactants can still be applied; however, the local density may
now evolve not only via the reactions but also through diffusive particle motion. Since the
latter process is simply linear in the density, we directly add a diffusion term to the rate
equation,

∂ta(x, t) = D∇2a(x, t) − (k − �)λa(x, t)k. (3)

For two-species reactions a pair of rate equations is required. For example, the pair
annihilation process A + B → 0 is represented through

∂ta = DA∇2a − λab, ∂tb = DB∇2b − λab (4)

for the local particle densities a(x, t) and b(x, t). If both densities may be taken to be uniform
throughout the temporal evolution, then their decay is just described by a(t) ∼ b(t) ∼ (λt)−1,
as in equation (2) with k = 2. However, this assumption is not always justified [28]. Note that
the difference in A and B particle numbers is locally conserved by the annihilation reaction.
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Correspondingly, in the case of equal diffusion constants (DA = DB), the difference field
a(x, t) − b(x, t) satisfies the diffusion equation. Thus, spatial inhomogeneities relax rather
slowly. For the case of equal initial A and B densities n0, Toussaint and Wilczek (TW)
observed that the fluctuations in the initial density of this diffusive field in fact determine the
long-time characteristics of the two-species annihilation process [29]. With the additional
assumption of asymptotic particle segregation into separated A and B rich domains, which
makes the spatially averaged a and b densities exactly half of the |a−b| average, TW obtained
the long-time behaviour

a(t) ∼ b(t) ∼
√

n0√
π(8πDt)d/4

. (5)

This decay is considerably slower than the one predicted by the uniform rate equation, and
thus dominates for t → ∞, provided d < 4. Again we emphasize that the ensuing qualitative
changes in four dimensions merely reflect the importance of spatial inhomogeneities within
the mean-field rate equation.

2.4. Relation between RG and other methods

The rate equations of the previous section still play an important role in the field-theoretic
analysis that aims to systematically include spatial fluctuations and correlations. In particular,
the rate equation solution represents the zeroth-order term in a loop expansion for the density,
also called the tree diagram sum. Above the upper critical dimension, the higher-order terms
in the loop expansion only serve to modify the rate constant in some non-universal way. Thus,
it was shown in [21] that the rate equations (4) are asymptotically valid without approximation
when d > 2. For d � 2, the higher-order terms in a loop expansion provide divergent
corrections, which then must be regulated (for example, by introducing a lattice) and RG
methods brought to bear to extract a systematic ε expansion. In this case, it is found that the
rate equation solution gives rise, under RG flow, to the leading-order term in the ε expansion.
As we shall see in subsequent sections, the structure of a loop expansion correcting the rate
equation solution holds even for more complicated situations, such as the reaction zones in
the two-species process A + B → 0 with initially segregated A and B particles, first analysed
in [30].

For the A + B → 0 pair annihilation process, Bramson and Lebowitz demonstrated
rigorously that the TW decay exponent is exact for all d < 4 for a particular two-species
model, finding bounds on the density amplitude [16, 17, 31]. RG methods, as mentioned
above, showed that the rate equations are asymptotically correct for d > 2, and therefore
established that the TW result for the density decay, including its amplitude, was quantitatively
correct and universal for 2 < d < 4. However, while the RG methods suggest that the TW
result might extend to d � 2, a demonstration that this is indeed the case has not yet, in our
opinion, been successfully accomplished (see section 5 for details). In this case, it is rather
the exact Bramson–Lebowitz result that lends credence to the conjecture that the TW decay
exponent applies for all dimensions d < 4.

Exact solutions with explicit amplitudes are available for some reaction–diffusion models,
usually in d = 1. For example, by exploiting a duality with the voter model, Bramson and
Griffeath solved a particular version of the A + A → 0 model in one and two dimensions [32],
with the result

a(t) ∼
{

1/(8πDt)1/2, d = 1

ln(Dt)/(8πDt), d = 2.
(6)
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The RG calculation for A+A → 0 generalizes these results for the decay exponent to arbitrary
dimensions (albeit of limited use for d � 2) [33] and provides a quantitative expression for
the decay amplitude as an expansion in ε = dc − d [20]. This expansion is poorly convergent
in one dimension (ε = 1), but, importantly, the RG analysis does demonstrate that the
density amplitude is universal. Thus, the exact solution and the RG analysis contribute in a
complementary manner to a full understanding of the problem, and tell us that any variation
of this model, such as allowing reactions to occur whenever reactants are within some fixed
number of lattice spacings, will result asymptotically in precisely the density decay law (6).
Furthermore, the RG expression for the amplitude in d = 2 (so ε → 0) is explicit, and matches
the exact solution (6). This serves both to demonstrate universality of the result and to provide
a check on the RG method.

There are many other exact results available in one dimension, and it is beyond the scope
of this review to provide a complete survey of this field. We restrict ourselves to mentioning
a few important classes. Many exact techniques exploit a mapping from the microscopic
master equation onto a quantum spin chain [34–37]. In several important cases, the ensuing
spin system turns out to be integrable and a variety of powerful techniques can be brought to
bear, such as mapping to free-fermion systems [38–41]. These quantum systems may also be
studied by real space RG methods [42]. The connection between the A + A → 0 reaction and
the one-dimensional Glauber dynamic Ising model has also been usefully exploited [43–45].
For steady-state situations, the asymmetric exclusion process, which has various reaction–
diffusion generalizations, can be solved via a Bethe ansatz or suitable matrix ansatz (see [46]
and references therein). Another useful technique is the empty interval method [47], which has
recently been generalized to a wide range of problems [48–50]. Techniques for dimensions
d > 1 have also been developed (see [51] and references therein). We remark that these
mappings generally require that each lattice site has finite occupancy (usually zero or one).
Although such restrictions may originate from physical considerations (e.g., modelling fast
on-site reactions) they do limit the investigation of universality. Furthermore, very little is
currently known using spin chain mappings about the dynamics of multi-species reactions.

Besides exact solutions, another important method is Smoluchowski theory [52, 53],
which constitutes a type of improved rate equation approximation. Whereas rate equations
represent a one-point mean-field theory, i.e., a closed equation for the particle density,
Smoluchowski theory may be viewed as a two-point mean-field approximation, namely a
closed set of equations for the density as well as the pair correlation function. One test particle
is taken to be fixed at the origin, and the remaining reactants are effectively treated as a
non-interacting diffusion field, with the boundary condition that their density vanishes at the
capture radius of our original particle, and tends to some fixed value at infinity. The resulting
diffusion flux towards the fixed particle is subsequently used to define an effective reaction
rate, dependent on the density at infinity. The reactive processes are now approximately
incorporated by assuming that the densities evolve via the usual rate equation but with the new
(time dependent for d � 2) effective rate constants.

This approximation works surprisingly well, in that it actually predicts the correct decay
exponents for the A + A → 0 reaction, and even captures the logarithmic correction at dc = 2.
The amplitudes, however, are incorrect for d < dc, but yield reasonable numerical values [54],
and are accurate for d = dc [55]. Remarkably therefore, this improved mean-field theory
yields correct scaling exponents even below the upper critical dimension. As we shall see in
section 4, this can be traced to the fact that in the corresponding field theory there appears no
propagator renormalization, and hence no anomalous dimension for the diffusion constant or
the fields (see also [56]). Consequently the density decay exponent turns out to be sufficiently
constrained (essentially through dimensional analysis) that it is determined exactly, i.e., to



Topical Review R87

all orders of the ε expansion, within the RG. Yet the density amplitude requires an explicit
perturbative calculation via the loop (and thus ε) expansion. A reasonable approximation
such as the Smoluchowski theory incorporates the correct dimensional analysis that fully
determines the decay exponent, but fails quantitatively for the amplitude calculation (except
at the marginal dimension). Furthermore, mixed reactions, such as those considered in
section 5, may display decay exponents that are not simply fixed by dimensional analysis
but rather rely on the details of the particle correlations. In these cases, Smoluchowski
theory is also insufficient to obtain the correct exponents, although here the Smoluchowski
exponents have been shown to be the same as those from the RG improved tree level [57].
However, unlike with field-theoretic methods, there is no obvious systematic way to improve on
Smoluchowski’s self-consistent approach, with the goal to include higher-order correlations.

3. Mapping to field theory

3.1. The model

We illustrate the mapping to a field theory representation first for the A+A → 0 single-species
pair annihilation reaction, and then generalize to other cases. We will consider particles on a
lattice (say a hypercubic lattice with lattice constant h) performing a continuous-time random
walk, where they hop to a neighbouring site at some uniform rate D/h2 (such that D becomes
the usual diffusion constant in the continuum limit). The particles do not interact, except
whenever two or more particles occupy the same site, in which case they annihilate with fixed
reaction rate λ. The state of the system is then characterized by the probability P({n}, t) at
time t of a particular configuration uniquely specified by the string of site occupation numbers
{n} = (n1, n2, . . .). The system’s stochastic dynamics is captured through a master equation
for the time-dependent configuration probability P. For pure diffusion, it assumes the form

∂tP ({n}, t) = D

h2

∑
〈ij〉

[(ni + 1)P (. . . , ni + 1, nj − 1 . . . , t) − niP ({n}, t)

+ (nj + 1)P (. . . , ni − 1, nj + 1 . . . , t) − njP ({n}, t)], (7)

where the summation extends over pairs of nearest-neighbour sites. The first term in the
square bracket represents a particle hopping from site i to j , and includes both probability
flowing into and out of the configuration with site occupation numbers {n} as a consequence
of the particle move. The second term corresponds to a hop from site j to i. The multiplicative
factors of n and n + 1 are a result of the particles acting independently.

Combining diffusion with the annihilation reaction gives

∂tP ({n}, t) = (diffusion term)

+ λ
∑

i

[(ni + 2)(ni + 1)P (. . . , ni + 2, . . . , t) − ni(ni − 1)P ({n}, t)], (8)

where the (diffusion term) denotes the right-hand side of equation (7). All that remains is
to specify the initial probability P({n}, t = 0). For uniform, random initial conditions the
particle distribution will be a Poissonian on each site i, i.e.,

P({n}, 0) =
∏

i

(
n̄

ni

0

ni!
e−n̄0

)
, (9)

where n̄0 denotes the average number of particles per site.
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3.2. Doi’s second-quantized representation

Stochastic classical particle models with local reactions can be rewritten in terms of ladder
operators familiar from quantum mechanics, as shown by Doi [2], thus taking advantage
of the algebraic structure of second quantization. This representation exploits the fact that
all processes just change the site occupation numbers by an integer. Since we have not
implemented any site occupation restrictions, we introduce for each lattice site i, j, . . . creation
and annihilation operators subject to ‘bosonic’ commutation relations[

âi , â
†
j

] = δij ,
[
âi , âj

] = [
â
†
i , â

†
j

] = 0. (10)

The ‘vacuum’ (empty lattice) |0〉 is characterized by ai |0〉 = 0 for all i, and on each site i we
define the state vector |ni〉 = (

â
†
i

)ni |0〉 (note that the normalization differs from the standard
quantum mechanical convention). It is then straightforward to show that

âi |ni〉 = ni |ni − 1〉, â
†
i |ni〉 = |ni + 1〉. (11)

Next we employ these on-site vectors to incorporate the state of the entire stochastic
particle system at time t in the quantity

|φ(t)〉 =
∑
{n}

P({n}, t)
∏

i

(
â
†
i

)ni |0〉. (12)

As a result, the first-order temporal evolution of the master equation is cast into an ‘imaginary-
time Schrödinger equation’

−∂t |φ(t)〉 = Ĥ |φ(t)〉, (13)

where the non-Hermitian time evolution operator (‘quasi-Hamiltonian’) for the processes in
equation (8) becomes

Ĥ = D

h2

∑
〈ij〉

(
â
†
i − â

†
j

)
(âi − âj ) − λ

∑
i

[
1 − (

â
†
i

)2]
â2

i . (14)

Equation (13) is formally solved by |φ(t)〉 = exp(−Ĥ t)|φ(0)〉, with the initial state determined
by equations (9) and (12).

The equations of motion for P({n}, t) and its moments in this representation are of course
identical to those following directly from the master equation. Yet at this point we may see the
advantage of using Doi’s formalism: the original master equation was complicated by factors
of n and n2 which are now absent. The ‘second-quantized’ formalism provides a natural
framework for describing independent particles that may be changing in number.

A different approach is to write an appropriate Fokker–Planck equation [58–60] for
the processes under consideration, although this is somewhat awkward due to the presence of
reaction processes where particles are created and/or destroyed. However, a more fundamental
problem in this approach is encountered in situations with low densities. In such cases the
Kramers–Moyal expansion used in the derivation of the Fokker–Planck equation breaks down,
and it is certainly not valid to terminate the expansion in the usual way after the second term
[60]. Alternatively, if the Fokker–Planck equation is derived from a coarse-grained Langevin
equation, its validity may again be questionable, since both the relevant slow variables and
their stochastic noise correlations must often be inferred phenomenologically.

We also note that an alternative formalism exists which again starts from a classical
master equation and leads to a path integral representation. This method uses the Poisson
representation, and assumes that the state of the system at time t can be expanded into a
superposition of multivariate uncorrelated Poissonians [60–62]. However, as shown in [63],
this approach is actually equivalent to Doi’s formalism, as presented here. An analogous
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representation in terms of Pauli spin matrices may also be used, which then replace the
bosonic ladder operators considered here. This corresponds to a master equation in which
only single occupancy is allowed per particle species at each lattice site. These techniques
can be especially useful in one dimension, where the resulting second-quantized formulation
represents certain quantum spin chains, which are often integrable [34–36]. However, our
primary motive in introducing the second-quantized representation here is to map the problem
to a field theory, and for this purpose the bosonic formalism developed above is more suitable.

To find ensemble averages A of observables at time t we cannot just use the standard
quantum mechanical matrix element, since this would involve two factors of the probabilities
P. Rather, we need a projection state 〈P|, defined by the conditions 〈P|â†

i = 〈P| and 〈P|0〉 = 1,
leading to

〈P| = 〈0| e
∑

i âi . (15)

From the above properties it follows that

A(t) =
∑
{n}

P({n}, t)A({n}) =
∑
{n}

P({n}, t)〈P|Â
∏

i

(
â
†
i

)ni |0〉 = 〈P|Â|φ(t)〉, (16)

where the operator Â is given by the function A({n}) with the substitution ni → â
†
i âi . It

is naturally not surprising that the expression for averages here differs from usual quantum
mechanics, since we consider, after all, an entirely classical model. Note too that there is
no requirement for Ĥ to be Hermitian. In fact, particle annihilation and creation reactions
obviously lead to non-Hermitian ladder operator combinations. Furthermore

1 = 〈P|φ(t)〉 = 〈P| exp(−Ĥ t)|φ(0)〉 (17)

shows that probability conservation is enforced through the condition 〈P|Ĥ = 0. Any quasi-
Hamiltonian Ĥ derived from a probability conserving master equation will necessarily satisfy
this property.

The factor exp
(∑

i âi

)
in the projection state can be commuted through to the right in

equation (16), with the net effect of taking â
†
i → 1 + â

†
i [3]. While this has the advantage of

simplifying the expression for A, we choose not to follow this procedure because there are
cases, such as branching and annihilating random walks with an even number of offspring
particles, where such a shift is undesirable as it masks an important symmetry. Furthermore,
as shown below, the same effect may be obtained in the field theory, when desired, by a
corresponding field shift.

We note that probability conservation is reflected in the fact that the time evolution
operator Ĥ must vanish on replacing all â

†
i → 1. In addition, because of the projection state,

for any operator Â there exists a corresponding operator Â′, with the same average A, that
is obtained by normal-ordering Â and then replacing the creation operators â

†
i by unity (the

projection state eigenvalue). For example, the density operator â
†
i âi may be replaced with âi ,

and the two-point operator â
†
i âi â

†
j âj becomes âiδij + âi âj .

3.3. Coherent state representation and path integrals

From the second-quantized representation, a field theory can be obtained via the very same
path integral techniques as developed for true quantum many-particle systems. A general
discussion of these methods can be found in standard textbooks [64, 65], and a presentation
specific to reaction–diffusion models is given by Peliti [4]. For completeness, we present the
basic method here, with a few supplementary observations.
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First, the (stochastic) temporal evolution is divided into N slices of ultimately infinitesimal
size 	t = t/N via

|φ(t)〉 = exp(−Ĥ t)|φ(0)〉 = lim
	t→0

exp(−Ĥ	t)t/	t |φ(0)〉. (18)

The second-quantized operators are then mapped onto ordinary complex numbers (in the
bosonic case) or Grassmann variables (for fermions) by inserting a complete set of coherent
states at each time slice before the limit 	t → 0 is taken.

Coherent states are right eigenstates of the annihilation operator, â|φ〉 = φ|φ〉, with
complex eigenvalue φ. Explicitly, |φ〉 = exp

(− 1
2 |φ|2+φâ†)|0〉. Their duals are left eigenstates

of the creation operator: 〈φ|â† = 〈φ|φ∗. A useful overlap relation is

〈φ1|φ2〉 = exp
(− 1

2 |φ1|2 − 1
2 |φ2|2 + φ∗

1φ2
)
. (19)

The coherent states are over-complete, but nonetheless may be used to form a resolution of
the identity operator. With our convention for the states |n〉, we have for a single lattice site

1 =
∑

n

1

n!
|n〉〈n| =

∑
m,n

1

n!
|n〉〈m|δmn =

∫
d2φ

π
|φ〉〈φ|, (20)

where we have used

δmn = 1

πm!

∫
d2φ e−|φ|2φ∗mφn, (21)

with the integration measure d2φ = d(Re φ) d(Im φ). The above expression generalizes
straightforwardly to multiple lattice sites according to

1 =
∫ ∏

i

(
d2φi

π

)
|{φ}〉〈{φ}|, (22)

where {φ} = (φ1, φ2, . . .) denotes a set of coherent state eigenvalues, one for each annihilation
operator âi , and |{φ}〉 = |φ1〉 ⊗ |φ2〉 ⊗ . . . .

A mathematical subtlety can arise with this representation of the identity. Expressions
such as exp(−Ĥ	t) are defined in terms of their power series, with an implied sum. The
identity operator (20) contains an integral, and in many cases these sums and integrals do not
commute. Consider, for example, 〈0| exp(λâk)|0〉 = 1 with the identity (20) inserted:

1 = 〈0|
∞∑

n=0

λn(âk)n

n!

∫
d2φ

π
|φ〉〈φ|0〉 =

∞∑
n=0

λn

n!

∫
d2φ

π
exp(−|φ|2)(φk)n, (23)

where equation (19) was used for 〈0|φ〉. By equation (21) the sum over n correctly yields
1 + 0 + 0 . . . . However, naively exchanging integration and summation gives

1 =
∫

d2φ

π
exp(−|φ|2 + λφk), (24)

which does not exist for k > 2 or for k = 2 and |λ| > 1. Nevertheless, it is convenient to
represent expressions such as (23) formally by (24), with the understanding that an explicit
evaluation implies a perturbative expansion in powers of λ. As a consequence, our formal
expressions for the field theory actions will appear to be unstable, but are actually well defined
within the framework of perturbation theory. We remark that it will be necessary to treat the
diffusion terms in Ĥ non-perturbatively. This is possible because the expansion in powers of
the diffusion constant, when acting on the coherent state |φ〉, is uniformly convergent in the φ

plane (a sufficient condition for commuting sums and integrals), as will be shown below.
The projection state 〈P| is proportional to the dual coherent state with all eigenvalues

φi = 1, which for brevity we will call 〈1|. Also, for Poisson initial conditions, |φ(0)〉 is
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proportional to the coherent state |n̄0〉 with all φi = n̄0. Now label each time slice in (18) by
a time index τ that runs in steps of 	t from time zero to t and insert the identity (22) between
each slice into equation (16):

A(t) = N−1 lim
	t→0

∫ (∏
i,τ

d2φi,τ

)
〈1|Â|{φ}t 〉

[
t∏

τ=	t

〈{φ}τ | exp(−Ĥ	t)|{φ}τ−	t 〉
]

〈{φ}0|n̄0〉.

(25)

The normalization factor N is to be determined later by requiring the identity operator to
average to unity. Note that a set of states has been inserted at the time slices at 0 and t as well,
for reasons that will become clear below. We now proceed to analyse the various contributions.

First, with our caveat above about implied perturbative calculations, we may take

〈{φ}τ | exp(−Ĥ	t)|{φ}τ−	t 〉 = 〈{φ}τ |{φ}τ−	t 〉 exp(−H({φ∗}τ , {φ}τ−	t)	t), (26)

where H({φ∗}τ , {φ}τ−	t ) = 〈{φ}τ |Ĥ |{φ}τ−	t 〉. This function is straightforwardly obtained
by normal ordering Ĥ and acting the âi to the right and the â

†
i to the left, whereupon

the creation/annihilation operators become respectively replaced with the coherent state
eigenvalues φ∗

i /φi . The remaining overlap in equation (26) factors:

〈{φ}τ |{φ}τ−	t 〉 =
∏

i

〈φi,τ |φi,τ−	t 〉, (27)

where, according to equation (19), for each lattice site

〈φi,τ |φi,τ−	t 〉 = exp(−φ∗
i,τ [φi,τ − φi,τ−	t ]) exp

(
1
2 |φi,τ |2 − 1

2 |φi,τ−	t |2
)
. (28)

Stringing together a product of these states for increasing τ will cause the second exponential
term to cancel except at the initial and final times. The first exponential yields a factor
exp[−φi,τ ∗(dφi,τ /dt)	t + O(	t2)] for each time slice τ and lattice site i.

The operator Â is assumed to be a function of the annihilation operators âi only, by the
procedure described at the end of section 3.2. Therefore 〈1|Â|{φ}t 〉 = 〈1|{φ}t 〉A({φ}t ), where
the latter function is obtained from Â through the replacement âi → φi,t . The matrix element
is multiplied with the remaining exponential factors at time t from equation (28), giving

〈1|{φ}t 〉
∏

i

exp

(
1

2
|φi,t |2

)
∝ exp

(∑
i

φi,t

)
. (29)

The initial term also picks up a factor from equation (28),

〈{φ}0|n̄0〉
∏

i

exp

(
−1

2
|φi,0|2

)
∝ exp

(∑
i

[n̄0φ
∗
i,0 − |φi,0|2]

)
. (30)

We may now take the limit 	t → 0. The O(	t) time difference in the φ∗
τ and φτ−	t

arguments of H is dropped with the provision that, in cases where it matters, the φ∗ field should
be understood to just follow the φ field in time. Indeed, this was found to be an essential
distinction in a numerical calculation of the path integral [66], and it will also play a role
in the treatment of the initial conditions below. The O(	t) terms in the product over τ in
equation (25) will become the argument of an exponential:

A(t) = N−1
∫ (∏

i

Dφi Dφ∗
i

)
A({φ}t ) exp

[−S({φ∗}, {φ})t0
]
. (31)

Here S denotes the action in the statistical weight, which reads explicitly

S({φ∗}, {φ})tf0 =
∑

i

(
−φi(tf ) − n̄0φ

∗
i (0) + |φi(0)|2 +

∫ tf

0
dt[φ∗

i ∂tφi + H({φ∗}, {φ})]
)

,

(32)
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where we have renamed the final time t → tf for clarity. The DφiDφ∗
i represent functional

differentials obtained from
∏

τ dφi,τ dφ∗
i,τ in the limit 	t → 0. At last, the normalization

factor is now fixed via N = ∫ ∏
i DφiDφ∗

i exp[−S({φ∗}, {φ})].
Before specifying H, let us discuss the initial and final terms in the action (32) in more

detail. The initial terms are of the form exp(φ∗(0)[φ(0) − n̄0]), which implies that the
functional integral over the variables φ∗(0) will create δ functions that impose the constraints
φ(0) = n̄0 at each lattice site. Thus, the initial terms may be dropped from the action (32) in
lieu of a constraint on the initial values of the fields φi [4]. However, a path integral with such
an implied constraint is not directly amenable to a perturbation expansion, so an alternative
approach was developed [67]. All calculations will be performed perturbatively with respect
to a reference action S0 composed of the bilinear terms ∝φ∗φ in S. As will be demonstrated
below, any such average will give zero unless every factor φ in the quantity to be averaged
can be paired up with an earlier φ∗ (that is, the propagator only connects earlier φ∗ to later φ).
The initial terms in the action (32) can be treated perturbatively by expanding the exponential.
Recalling that the time ordering of the product φ∗(0)φ(0) has φ slightly earlier than φ∗, we
see that all terms in the perturbative expansion will give zero, which is equivalent to simply
dropping the φ∗φ initial term from the action (32). The remaining initial state contribution
exp[−n̄0φ

∗(0)] then replaces an implied constraint as the means for satisfying the assumed
random (Poissonian) initial conditions.

Prior to commenting on the final term −φi(tf ) in the action (32), we now proceed to take
the continuum limit via

∑
i → ∫

h−d ddx, φi(t) → φ(x, t)hd , and φ∗
i (t) → φ̃(x, t). The

latter notation indicates that we shall treat the complex conjugate fields φ̃(x, t) and φ(x, t) as
independent variables. This is especially appropriate once we apply a field shift φ̃ → 1 + φ̄,
which, in addition to modifying the form of H, has the effect of replacing∫ tf

0
dt φ̃∂tφ → φ(tf ) − φ(0) +

∫ tf

0
dt φ̄∂tφ. (33)

Thus the final term −φ(x, tf ) in the action is cancelled, which simplifies considerably the
perturbative calculations, but introduces a new initial term. However, the latter will again
vanish when perturbatively averaged against the bilinear action S0, as described above. For
many of the problems discussed here such a field shift will be employed. Lastly, the remaining
initial time contribution reads n̄0 → n0h

d , where n0 denotes the number density per unit
volume. Note that we have (arbitrarily) chosen φ(x, t) to have the same scaling dimension as
a density. While the continuum limit could have been defined differently for the fields φ and
φ̃, our prescription ensures that the ‘bulk’ contributions to the action must vanish as φ̃ → 1
owing to probability conservation.

At this point, let us explicitly evaluate H for diffusion-limited pair annihilation,
A + A → 0. Since the time evolution operator (14) is already normal ordered, we obtain
directly

H({φ∗}, {φ}) = D

h2

∑
〈ij〉

(φ∗
i − φ∗

j )(φi − φj ) − λ
∑

i

(1 − φ∗2
i )φ2

i . (34)

We now proceed from a lattice to the continuum limit as outlined above, replacing the finite
lattice differences in equation (34) with spatial gradients. The resulting field theory action,
prior to any field shift, reads

S[φ̃, φ] =
∫

ddx

{
−φ(tf ) +

∫ tf

0
dt[φ̃(∂t − D∇2)φ − λ0(1 − φ̃2)φ2] − n0φ̃(0)

}
, (35)
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where λ0 = λhd . After applying the field shift φ̃ → 1 + φ̄, we obtain

S[φ̄, φ] =
∫

ddx

{∫ tf

0
dt[φ̄(∂t − D∇2)φ + λ1φ̄φ2 + λ2φ̄

2φ2] − n0φ̄(0)

}
, (36)

with λ1 = 2λ0 and λ2 = λ0. Finally, we remark again that these actions are defined through
the perturbation expansion with respect to the nonlinearities, as discussed above. However,
the diffusion terms are uniformly convergent, resumming to give exp(−D|∇φ|2), which is
bounded for all φ. Hence, the diffusion part of the action may be treated non-perturbatively.

3.4. Generalization to other reactions

This procedure to represent a classical stochastic master equation in terms of a field theory
can be straightforwardly generalized to other locally interacting particle systems, e.g., the kth
order decay reaction kA → �A with � < k. The appropriate master equation for identical
particles will result in the time evolution operator

Ĥ = ĤD −
∑

i

λ0
[(

â
†
i

)� − (
â
†
i

)k]
âk

i , (37)

where ĤD denotes the unaltered diffusion part as in equation (14). Following the method
described above, and performing the field shift φ̃ → 1 + φ̄ eventually result in the field theory
action

S[φ̄, φ] =
∫

ddx

{∫ tf

0
dt

[
φ̄(∂t − D∇2)φ +

k∑
i=1

λiφ̄
iφk

]
− n0φ̄(0)

}
, (38)

with λi = λ0
(
k
i

) − λ0
(
�
i

)
for i � �, and λi = λ0

(
k
i

)
for i > � (note that always λk = λ0). Also,

the integer k determines which vertices are present, while � only modifies coefficients. In the
simplest case, k = 2, we recover λ1 = 2λ0 for pair annihilation A + A → 0, whereas λ1 = λ0

for pair coagulation A+A → A. One variant on the A+A → 0 reaction would be to allow for
mixed pair annihilation and coagulation. That is, whenever two A particles meet, with some
probability they annihilate according to A + A → 0, or otherwise coagulate, A + A → A. In
the master equation these competing processes are represented by having both reaction terms
present, with reaction rates λ(�) (where � = 0, 1 indicates the number of reaction products)
in the correct proportions. The end result is an action of form (38), but with a coupling ratio
λ1/λ2 that interpolates between 1 and 2.

The description of multi-species systems requires, at the level of the master equation,
additional sets of occupation numbers. For example, the master equation for the two-species
pair annihilation reaction A + B → 0 employs a probability P({m}, {n}, t) where {m}, {n}
respectively denote the set of A/B particle occupation numbers. Various forms of occupation
restrictions could be included in the master equation, e.g., Bramson and Lebowitz [16] consider
a model in which a given site can have only A or only B particles. Here we will consider
unrestricted site occupation. The A and B particles diffuse according to equation (7), though
possibly with distinct diffusion constants. Combining the reactions then gives

∂tP = (diffusion terms) + λ
∑

i

[(mi + 1)(ni + 1)P (. . . , m1 + 1, . . . , n1 + 1, . . . , t)

−miniP ({m}, {n}, t)]. (39)

The second-quantized formulation then requires distinct creation and annihilation operators
for each particle species. The state vector is therefore constructed as

|φ(t)〉 =
∑

{m},{n}
P({m}, {n}, t)

∏
i

(
â
†
i

)mi
(
b̂
†
i

)ni |0〉, (40)
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and the master equation again assumes form (13), with the time evolution operator

Ĥ = DA

h2

∑
〈ij〉

(
â
†
i − â

†
j

)
(âi − âj ) +

DB

h2

∑
〈ij〉

(
b̂
†
i − b̂

†
j

)
(b̂i − b̂j ) − λ

∑
i

(
1 − â

†
i b̂

†
i

)
âi b̂i .

(41)

In the mapping to the field theory we must then involve two sets of coherent states, resulting in
two independent fields a(x, t) and b(x, t). Hence, after shifting both ã → 1+ ā and b̃ → 1+ b̄,
the action reads

S[ā, a, b̄, b] =
∫

ddx

{ ∫ tf

0
dt[ā(∂t − DA∇2)a + b̄(∂t − DB∇2)b

+ λ0(ā + b̄)ab + λ0āb̄ab] − a0ā(0) − b0b̄(0)

}
. (42)

Further generalizations are straightforward: for each new particle species additional
occupation numbers, second-quantized operators, and fields are to be introduced. The details of
the reaction are coded into the master equation, though after some practice, it is actually easier
to directly start with the Doi time evolution operator, as it is a more efficient representation.
The general result is as follows: for a given reaction, two terms appear in the quasi-Hamiltonian
(as in the original master equation). The first contribution, which is positive, contains both
an annihilation and creation operator for each reactant, normal ordered. For example, for the
A + A → 0 and A + A → A reactions this term reads â†2â2, whereas one obtains for the
A + B → 0 reaction â†b̂†âb̂. These contributions indicate that the respective second-order
processes contain the particle density products a2 and ab in the corresponding classical rate
equations. The second term in the quasi-Hamiltonian, which is negative, entails an annihilation
operator for every reactant and a creation operator for every product, normal ordered. For
example, in A + A → 0 this term would be â2, whereas for A + A → A it becomes â†â2 and
for A + B + C → A + B it would read â†b̂†âb̂ĉ. These terms thus directly reflect the occurring
annihilation and creation processes in second-quantized language.

3.5. Relation to stochastic partial differential equations

In some cases, the field theory developed above can be cast into a form reminiscent of stochastic
partial differential equations (SPDE) with multiplicative noise. Consider the action (36) for
single-species pair annihilation A + A → 0: apart from the quartic term λ2φ̄

2φ2 every term
in S is linear in the φ̄ field. The quartic term can in fact also be ‘linearized’ by means of
introducing an auxiliary field, where

exp(−λ2φ̄
2φ2) ∝

∫
dη exp(−η2/2) exp(iη

√
2λ2φ̄φ). (43)

Substituting this relation into the action results in three fluctuating fields, namely φ̄, φ and η,
but with the benefit that φ̄ appears just linearly. Therefore, performing the functional integral∫
Dφ̄ exp(φ̄[. . .]) simply yields a functional Dirac δ function, ensuring that all configurations

φ(x, t) satisfy the corresponding constraint given by its argument. As a result, the field φ is
determined by a stochastic partial differential equation:

∂tφ = D∇2φ − 2λ0φ
2 + i

√
2λ0φη, (44)

where η represents a stochastic Gaussian variable with unit variance, i.e., 〈η〉 = 0,

〈η(x, t)η(x′, t ′)〉 = δ(x − x′)δ(t − t ′). Note that the above procedure is just the reverse
of the standard field theory representation of a Langevin-type SPDE [1].
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It is not surprising that the noise term vanishes as the field φ → 0, since the
shot noise should diminish as the number of particles decreases. Once the absorbing
state with zero particles is reached, all deterministic as well as stochastic kinetics ceases.
However, the appearance of the imaginary noise looks rather strange, and even when the
stochastic force is redefined as ζ = i

√
2λ0φη, its variance becomes formally negative:

〈ζ(x, t)ζ(x′, t ′)〉 = −2λ0φ(x, t)2δ(x − x′)δ(t − t ′). Recall, however, that the field φ is
complex, and therefore cannot be simply interpreted as the particle density. Furthermore,
there is evidence suggesting that the SPDE (44) is numerically unstable [66, 68].

Interestingly, though, one may obtain an SPDE for a real density field as follows [69].
Starting with the unshifted action (35), we apply the nonlinear Cole–Hopf transformation
φ̃ = eρ̃ , φ = ρ e−ρ̃ , such that φ̃φ = ρ, and where the Jacobian is unity. This yields
φ̃∂tφ = ∂t [ρ(1− ρ̃)]+ ρ̃∂tρ, and, omitting boundary contributions, −Dφ̃∇2φ = −Dφ∇2φ̃ =
−Dρ[∇2ρ̃ + (∇ρ̃)2] for the diffusion term. Finally, the annihilation reaction is represented
through −λ0(1 − φ̃2)φ2 = λ0ρ

2(1 − e−2ρ̃ ) = 2λ0ρ̃ρ2 − 2λ0ρ̃
2ρ2 . . . , if we expand the

exponential. Hence we see that the quadratic term in the field ρ̃ is now of the opposite
sign to before, and therefore corresponds to real, rather than imaginary, noise. However, the
truncation of this expansion at second order is not justifiable, and, furthermore, a consistent
description of the annihilation kinetics in terms of the fields ρ and ρ̃ comes with the price of
having to incorporate ‘diffusion noise’, i.e. the nonlinear coupling −Dρ(∇ρ̃)2.

At any rate, this analysis and the previous discussions show that simply writing a mean-
field rate equation for the annihilation reaction and then adding real Gaussian noise do not
in general yield an appropriate SPDE. An even more significant observation is that only two-
particle reactions can straightforwardly be cast in the form of an SPDE, since the linearization
(43) requires that the field φ̄ appears quadratically. For example, the triplet annihilation
reaction 3A → 0 reaction cannot simply be represented as the corresponding rate equation
plus real, multiplicative noise.

4. Renormalization group method

In this section, we describe the basic methodology for performing perturbative RG calculations
in the context of reaction–diffusion field theories. While our aim is to present these techniques
in a pedagogical manner, our discussion cannot be entirely self-contained here. For additional
details, specifically with respect to perturbation theory and its representation in terms of
Feynman diagrams, reference should also be made to the standard field theory literature
[70–72].

4.1. Diagrammatic expansion

The diagrammatic expansion for performing field theory calculations is constructed in the
standard way: the part of the action that is bilinear in the fields is identified as a Gaussian
reference action S0. All other terms are evaluated perturbatively by expanding the exponential
exp(−S + S0) and averaging with statistical weight exp(−S0). These Gaussian averages
decompose into products of pair correlation functions, and can be represented symbolically
through Feynman diagrams. Propagators, represented by lines in the Feynman graphs,
correspond to the pair correlators of fields that are averaged together. The nonlinear couplings
are graphically depicted as vertices that connect propagators together.

We illustrate this procedure explicitly for the kth order single-species annihilation reactions
kA → �A with � < k. In this case, we may take the diffusive part of the action as S0. Thus,
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Figure 1. Various diagrammatic components: (a) the propagator G0 and the initial density n0,
(b) vertices for 2A → �A, (c) vertices for 3A → �A and (d) vertices for branching reactions, such
as A → 2A. Our convention throughout is that time increases to the left.

the propagator becomes just the diffusion Green function. For a single-species reaction, the
diffusion action reads

S0 =
∫

ddx

∫ ∞

−∞
dt φ̄(∂t − D∇2)φ =

∫
ddp

(2π)d

dω

2π
φ̄(−p,−ω)(−iω + Dp2)φ(p, ω), (45)

where we have used the time and space Fourier transformed fields

φ(p, ω) =
∫

ddx

∫
dt exp(−ip · x + iωt)φ(x, t), (46)

and extended the time integration range to the entire real axis (as will be justified below). Next
we define the propagator as G(x, t) = 〈φ̄(x, t)φ(0, 0)〉0. Its Fourier transform has the form
〈φ̄(p, ω)φ(p′, ω′)〉0 = G0(p, ω)(2π)dδ(p + p′)2πδ(ω + ω′), with the δ functions originating
from spatial and temporal translation invariance. Explicitly, we infer from the action (45)

G0(p, ω) = 1

−iω + Dp2
, (47)

which follows from straightforward Gaussian integration. In the complex frequency plane the
function G0(p, ω) has a single pole at ω = −iDp2. Upon performing the inverse temporal
Fourier transform from ω to t we find

G0(p, t) = exp(−Dp2t)�(t), (48)

where �(t) denotes Heaviside’s step function. Mathematically, its origin is that the sign of t
determines whether the integration contour is to be closed in the upper or lower frequency half
plane. Physically, it expresses causality: the unidirectional propagator only connects earlier φ̄

fields to later φ fields (as advertised before in section 3.3). Since there exists no earlier source
of φ̄ fields, the time integral in S0 may as well be extended from [0, tf ] to all times, as claimed
above. Obviously, for multi-species systems there is a distinct propagator of form (47), (48)
for each particle type.

The vertices in the Feynman diagrams originate from the perturbative expansion of
exp(−S + S0). For example, the term λiφ̄

iφk in the action (38) requires k incoming
propagators, that is, averages connecting k earlier φ̄ fields to the k later φ ‘legs’ attached
to the vertex, and i outgoing propagators, each of which links a φ̄ to a later φ field. The
diagrammatic representation of the propagator and some vertices is depicted in figure 1.
Propagators attach to vertices as distinguishable objects, which implies that a given diagram
will come with a multiplicative combinatorial factor counting the number of ways to make the
attachments. (Note that we do not follow the convention of defining appropriate factorials with
the nonlinear couplings in the action to partially account for this attachment combinatorics.)
Any contribution of order m in the coupling λi is represented by a Feynman graph with
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Figure 2. Feynman graphs that contribute to the mean particle density for the pair annihilation
and coagulation reactions A + A → 0 and A + A → A. The first row depicts tree diagrams, the
second row one-loop diagrams and the third row two-loop diagrams.

m corresponding vertices. Moreover, if we are interested in the perturbation expansion
for cumulants only, we merely need to consider fully connected Feynman diagrams, whose
vertices are all linked through propagator lines. Lastly, the so-called vertex functions are given
in terms of one-particle irreducible diagrams that do not separate into disjoint subgraphs if
one propagator line is ‘cut’.

The perturbative expansion of the initial state contribution exp[−n0φ̄(t = 0)] creates φ̄

fields at t = 0. A term of order nm
0 comes with a factor of 1/m!, but will have m! different ways

to connect the initial φ̄ fields to the corresponding Feynman graph, so the end result is that these
factorials always cancel for the initial density. A similar cancellation of factorials happens for
the vertices; for example, a term of order λm

1 does have the 1/m! cancelled by the number of
permutations of the m λ1 vertices in the diagram. Note, however, these combinatorial factors
are distinct from those that arise from the different possibilities to attach propagators.

Since the systems of interest are frequently translationally invariant (in space and time),
the mathematical expressions represented by the Feynman graphs are often most conveniently
evaluated in Fourier space. To calculate, say, the mean particle density 〈φ(t)〉 according to
equation (31), one needs diagrams with a single φ field at time t which terminates the graph
on the left. All diagrams that end in a single propagator line will thus contribute to the
density, see figure 2. Since 〈φ(t)〉 is spatially uniform, the final propagator must have p = 0.
Similarly, in momentum space the initial density terms are of the form n0φ̄(p = 0, t = 0), so
the propagators connected to these also come with zero wavevector. The λi vertices are to be
integrated over position space, which creates a wavevector-conserving δ function. Diagrams
that contain loops may have ‘internal’ propagators with p �= 0, but momentum conservation
must be satisfied at each vertex. These internal wavevectors are then to be integrated over, as
are the internal time or frequency arguments.

To illustrate this procedure, consider the second graph in the first row, and the first diagram
in the second row of figure 2, to whose loop we assign the internal momentum label p:

I02 =
∫ t

0
dt1G0(0, t − t1)(−λ1)G0(0, t1)

2n2
0, (49)

I12 =
∫ t

0
dt2

∫ t2

0
dt1G0(0, t − t2)(−λ1)

×
∫

ddp

(2π)d
2G0(p, t2 − t1)G0(−p, t2 − t1)(−λ2)G0(0, t1)

2n2
0 (50)

(the indices here refer to the number of loops and the factors of initial densities involved,
respectively). The factor 2 in the second contribution originates from the number of
distinguishable ways to attach the propagators within the loop. Noting that G0(p = 0,
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+=

Figure 3. Graphical representation of the Dyson equation for the particle density in the A+A → 0
and A + A → A reactions.

t > 0) = 1, and that the required p integrations are over Gaussians, these expressions are
clearly straightforward to evaluate,

I02 = −λ1n
2
0t, I12 = 8λ1λ2n

2
0

(8πD)d/2

t2−d/2

(2 − d)(4 − d)
(51)

(for d �= 2, 4). Consequently, the effective dimensionless coupling associated with the loop
in the second diagram is proportional to (λ2/D

d/2)t1−d/2.
Hence, in low dimensions d < 2, the perturbation expansion is benign at small times, but

becomes ill-defined as t → ∞, whereas the converse is true for d > 2. In two dimensions, the
effective coupling diverges as (λ2/D) ln(Dt) for both t → 0 and t → ∞. The ‘ultraviolet’
divergences for d � 2 in the short-time regime are easily cured by introducing a short-distance
cut-off in the wavevector integrals. This is physically reasonable since such a cut-off was in
any case originally present in the form of the lattice spacing (or particle capture radius). The
fluctuation contributions will then explicitly depend on this cut-off scale. Thus, in dimensions
d > dc = 2, perturbation theory is applicable in the asymptotic limit; this implies that the
overall scaling behaviour of the parameters of the theory cannot be affected by the analytic
loop corrections, which can merely modify amplitudes. In contrast, the physically relevant
‘infrared’ divergences (in the long-time, long-distance limit) in low dimensions d � 2 are
more serious and render a ‘naive’ perturbation series meaningless. However, as will be
explained in the following subsections, via exploiting scale invariance and the exact structure
of the renormalization group, one may nevertheless extract fluctuation-corrected power laws
by means of the perturbation expansion.

Feynman graphs that contain no loops are called tree diagrams. For the particle density
calculation illustrated in figure 2, these tree diagrams are formed with only λ1 and n0 vertices,
and we denote the sum of all those tree contributions by atr(t). For example, for the
A + A → (0, A) pair reactions, we may construct this entire series iteratively to all orders
as shown graphically in figure 3. Thus, we arrive at a self-consistent Dyson equation for the
particle density. More generally, for the single-species reactions kA → �A with � < k the
vertex on the right-hand side is connected to k full tree density lines. Since all propagators
in tree diagrams come with p = 0, the corresponding analytical expression for the Dyson
equation reads

atr(t) = n0 − λ1

∫ t

0
dt ′ atr(t

′)k. (52)

Upon taking a time derivative, this reduces to the mean-field rate equation (1), with the
correct initial condition. Furthermore, λ1 = (k − �)λ0, i.e., the rate constant is properly
proportional to the number of particles removed by the reaction. Evidently, therefore, the tree-
level approximation is equivalent to simple mean-field theory, and any fluctuation corrections
to the rate equation must emerge from Feynman graphs that incorporate higher-order vertices
λi with i > 1, i.e., diagrams with loops. We note that the mean-field rate equations also follow
from the stationarity conditions, i.e., the ‘classical field equations’, for the action S (regardless
of performing any field shifts). For example, taking δS/δφ = 0 = δS/δφ̄ for the action (38)
results in φ̄ = 0 and φ = atr(t).
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Following up on our earlier discussion, we realize that the loop fluctuation contributions
cannot alter the asymptotic power laws that follow from the tree diagrams in sufficiently
large dimensions d > dc, where mean-field theory should therefore yield accurate scaling
exponents. However, note that, for d > dc, there will generally be non-negligible and
non-universal (depending on the ultraviolet cut-off) fluctuation corrections to the amplitudes.
Recall that the (upper) critical dimension dc can be readily determined as the dimension where
the effective coupling associated with loop integrals becomes dimensionless.

4.2. Renormalization

As we have seen in the above example (50), when one naively tries to extend the diagrammatic
expansion beyond the tree contributions to include the corrections due to loop diagrams, one
encounters divergent integrals. We are specifically interested in the situation at low dimensions
d � dc: here the infrared (IR) singularities (apparent as divergences as external wavevectors
p → 0 and either t → ∞ or ω → 0) emerging in the loop expansion indicate substantial
deviations from the mean-field predictions. Our goal is to extract the correct asymptotic power
laws associated with these ‘physical’ infrared singularities in the particle density and other
correlation functions. To this end, we shall turn to our advantage the fact that power laws
reflect an underlying scale invariance in the system. Once we have found a reliable method to
determine the behaviour of any correlation function under either length, momentum, or time
scale transformations, we can readily exploit this to construct appropriate scaling laws.

There exist well-developed tools for the investigation and subsequent renormalization of
ultraviolet (UV) singularities, which stem from the large wave number contribution to the
loop integrals. In our models, these divergences are superficial, since we can always reinstate
short-distance cut-offs corresponding to microscopic lattice spacings. However, any such
regularization procedure introduces an explicit dependence on the associated regularization
scale. Since it does not employ any UV cut-off, dimensional regularization is especially useful
in higher loop calculations. Yet even then, in order to avoid the IR singularities, one must
evaluate the integrals at some finite momentum, frequency or time scale. In the following,
we shall denote this normalization momentum scale as κ , associated with a length scale κ−1,
or, assuming purely diffusive propagation, time scale t0 = 1/(Dκ2). Once the theory has
been rendered finite with respect to the UV singularities via the renormalization procedure,
we can subsequently extract the dependence of the relevant renormalized model parameters
on κ . This is formally achieved by means of the Callan–Symanzik RG flow equations.
Precisely in a regime where scale invariance holds, i.e., in the vicinity of a RG fixed point,
the ensuing ultraviolet scaling properties also yield the desired algebraic behaviour in the
infrared. (For a more elaborate discussion of the connections between UV and IR singularities,
see [12].)

The renormalization procedure itself is, in essence, a resummation of the naive, strongly
cut-off-dependent loop expansion that is subsequently well behaved as the ultraviolet regulator
is removed. Technically, one defines renormalized effective parameters in the theory that
formally absorb the ultraviolet poles. When such a procedure is possible—i.e., when the field
theory is ‘renormalizable’, which means only a finite number of renormalized parameters need
to be introduced—one obtains in this way a unique continuum limit. Examining the RG flow of
the scale-dependent parameters of the renormalized theory, one encounters universality in the
vicinity of an IR-stable fixed point: there the theory on large length and time scales becomes
independent of microscopic details. The preceding procedure is usually only quantitatively
tractable at the lowest dimension that gives UV singularities, i.e., the upper critical dimension
dc, which is also the highest dimension where IR divergences appear. In order to obtain the
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infrared scaling behaviour in lower dimensions d < dc, we must at least initially resort to
a perturbational treatment with respect to the marginal couplings in the theory, which are
dimensionless at dc (and perhaps subsequently resum the perturbation series). The scaling
exponents can then be obtained in a controlled manner in a dimensional expansion with respect
to the small parameter ε = dc − d.

We can follow standard procedures (see, e.g., [70–72]) for implementing the
renormalization program. First, we must identify the primitive UV divergences, the sub-
components of the diagrams that are responsible for these singularities. This is most
conveniently done using the vertex functions �(m,n), which represent a sum of all possible
one-particle irreducible Feynman graphs that are attached to n incoming and m outgoing
propagator lines (of course, for a multispecies vertex function, separate indices are required
for the incoming and outgoing lines of each species). In frequency and wavevector space these
subdiagrams enter multiplicatively, which means that once the vertex function divergences are
resolved, the general diagrammatic expansion will be well behaved. Which vertex functions
are primitively divergent can be ascertained by direct power counting: [�(m,n)] = κα , where
κ denotes some reference wavevector, such as the normalization scale mentioned above. The
scaling dimension of the vertex function �(m,n) is just that of the coupling λmn from a term
λmnφ̄

mφn in the action, since at the tree level �(m,n) ∼ λmn. Loop diagram fluctuation
corrections, however, require additional nonlinear couplings, which in turn determine the
primitive degree of divergence for the associated momentum space integrals. We refer to the
standard field theory texts for a general discussion of the ensuing vertex function dimensional
analysis, but provide a brief outline of the procedure for our situation.

The action S itself must be dimensionless, so any term in the integrand of S must have
scaling dimension κd+2. Consider the kA → �A annihilation reaction with � < k. The
interaction vertices λiφ̄

iφk in the action (38) correspond to k incoming and i = 1, . . . , k

outgoing lines. With our choice of taking the continuum limit, the scaling dimensions of the
fields are [φ] = κd and [φ̄] = κ0. Hence we obtain [�(i,k)] = [λi] = κ2−(k−1)d for all i (recall
that λi ∝ λ0 of the unshifted theory). Let us now investigate the lowest-order loop correction
to the vertex function �(i,k), which contains k internal propagator lines, and thus is proportional
to λiλk . The involved momentum integral therefore must scale as [λk]−1 = κ(k−1)d−2. By
choosing as κ the inverse short-distance cut-off, we see that if the exponent here is non-
negative, the vertex function contains a primitive UV divergence (as κ → ∞) and must be
renormalized. (The converse is true for the IR singularities, which emerge in the limit κ → 0.)
The lth order corrections to the bare vertex function must scale as κl[(k−1)d−2]. Consequently,
for a given k, the vertex functions �(i,k) become primitively UV divergent, and increasingly so
in higher loop orders, for d > dc = 2/(k − 1) for all i. The IR singularities, on the other hand,
become successively worse in higher orders of the perturbation expansion for d < dc. At the
critical dimension, the loop diagrams carry logarithmic UV and IR divergences, independent
of the loop order.

Hence this scaling discussion already reveals the upper critical dimension dc = 2 for
pair annihilation and coagulation, A + A → (0, A), in agreement with our analysis following
equation (51), whereas dc = 1 for the triplet reactions 3A → �A. All higher-order reactions
should be adequately described by mean-field theory, as represented by the tree Feynman
graphs. But in general, since the assignment of scaling dimensions to the fields φ and φ̄ is
somewhat arbitrary, one needs to be more careful and first determine the effective couplings in
the perturbational expansion and from there infer the upper critical dimension. For example,
the field theory for directed percolation, see section 6, incorporates the vertices λ12φ̄φ2 and
λ21φ̄

2φ. The effective coupling then turns out to be the product u ∼ λ12λ21, whose scaling
dimension is [u] = κ4−d , which indicates that actually dc = 4 in this case.
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Figure 4. The set of primitively divergent diagrams contributing to �(1,3)(t2 − t1) for the 3A → �A

reaction, � � 2.

Once the primitive divergences are identified, they are used to define renormalized
coupling constants into which the UV singularities are absorbed. For the kA → �A decay
reaction, this procedure is unusually simple, and in fact the entire perturbation series can be
summed to all orders. First, we note that since all vertices in the action (38) have k � 2
incoming lines, one cannot construct any loop diagram for the vertex function �(1,1) that
corresponds to the inverse propagator. Hence the bare diffusion propagator (47) or (48) is
not affected by fluctuations and the tree-level scaling x ∼ p−1 ∼ (Dt)1/2 remains intact
[33]. The absence of field and diffusion constant renormalization in this case constitutes the
fundamental reason that improved mean-field theories of the Smoluchowski type, and also
simple scaling approaches, are capable of obtaining correct density decay exponents. Hence,
for pair annihilation or coagulation, one would predict that the density of surviving particles
at time t is given in terms of the diffusion length by a(t) ∼ x−d ∼ (Dt)−d/2.

This leaves us with the renormalization of the vertex couplings λm, encoded in the vertex
functions �(m,k). Since all λm are proportional to the reaction rate λ0, there is essentially only
a single renormalized coupling gR (as is obvious if we work with the unshifted action). As
a representative example, we depict the ensuing diagrammatic expansion for the case m = 1
and k = 3 in figure 4. It will be sufficient to work with p = 0. In (p, t) space we obtain
explicitly

�(m,k)(t2 − t1) = λmδ(t2 − t1) − λmλ0I (t2 − t1) + λmλ2
0

∫ t2

t1

dt ′I (t2 − t ′)I (t ′ − t1) − . . . ,

(53)

where we have used λk = λ0, and I (t) is given by the following integral with k − 1 loops over
k propagators:

I (t) = k!
∫ k∏

i=1

(
ddpi

(2π)d

)
(2π)dδ

(
k∑

i=1

pi

)
exp

(
−

k∑
i=1

Dp2
i t

)
= Bk(Dt)−d/dc , (54)

with Bk = k!k−d/2(4π)−d/dc and dc = 2/(k − 1). Taking the Laplace transform

�̃(m,k)(s) =
∫ ∞

0
�(m,k)(t) e−st dt, (55)

the convolution theorem renders (53) into a geometric sum:

�̃(m,k)(s) = λm

1 + λ0̃I (s)
, Ĩ (s) = Bk�(ε/dc)D

−d/dc s−ε/dc , (56)

where ε = dc − d, and �(x) is Euler’s gamma function. For ε > 0, the loop integral Ĩ (s)

displays the expected IR divergence as s → 0. On the other hand, the UV singularity (for
finite s) at dc appears as an ε pole in the gamma function �(ε/dc) ∝ dc/ε.

Recall that the bare effective coupling λ0/D has scaling dimension κ2−(k−1)d = κ2ε/dc .
Hence we may introduce the dimensionless parameter g0 = (λ0/D)κ−2ε/dc with some arbitrary
momentum scale κ . Next we define its renormalized counterpart by the value of the vertex
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function �̃(k,k) at vanishing external wavevectors and Laplace argument s = 1/t0 = Dκ2,
which sets our normalization point. Thus,

gR = �̃(k,k)(s)|s=Dκ2κ−2ε/dc/D = Zgg0, Z−1
g = 1 + g0Bk�(ε/dc) (57)

according to equation (56). Formally, a perturbative expansion in terms of g0 can be readily
exchanged for an expansion in gR by straight substitution g0 = gR/[1 − gRBk�(ε/dc)]. As
ε → 0, however, this substitution becomes singular, since the multiplicative renormalization
constant Z−1

g that was introduced to absorb the UV pole diverges in this limit. It is crucial to
note that the renormalized coupling explicitly depends on the normalization scale κ . Indeed,
this is borne out by calculating the associated RG β function

βg(gR) = κ
∂

∂κ
gR = gR

[
−2ε

dc

− κ
∂

∂κ
ln Z−1

g

]
= 2gR

[
− ε

dc

+ Bk�

(
1 +

ε

dc

)
gR

]
. (58)

Note that βg , here computed to all orders in perturbation theory, is regular as ε → 0 when
expressed in terms of renormalized quantities. For the simple annihilation models, the β

function is exactly quadratic in gR , which is not typical and is due to the geometric sum in the
primitively divergent vertex function, which reduces the fluctuation contributions effectively
to the one-loop graph. Equation (58) has the standard structure that the linear coefficient is of
order ε = dc − d while the quadratic coefficient is order unity. The theory is manifestly scale
invariant (independent of κ) at either gR = 0 (which here corresponds to pure diffusion, no
reactions) or at the special fixed-point value for the coupling given by the non-trivial zero of
the β function

g∗
R = [Bk�(ε/dc)]

−1, (59)

which is of order ε.
We remark that the above renormalization structure directly applies to multispecies

annihilation reactions as well. Consider, for example, the action (42) for A + B → 0.
Once again, the vertices permit no propagator renormalization, and the perturbation expansion
for the vertex functions that define the renormalized reaction rate takes the same form as in
figure 4, with incoming A and B lines, and the series of internal loops formed with precisely
these two distinct propagators. Consequently, we just recover the previous results (57), (58),
and (59) with k = 2.

4.3. Callan–Symanzik equation and loop expansion for the density

In order to employ the renormalization group machinery to obtain asymptotic (long-time,
large-distance) expressions for the particle density and its correlations, we next develop the
Callan–Symanzik equation for the density. By means of perturbation theory in the IR-finite
regime and the subsequent substitutions of gR for λ0, the density can be calculated as an
explicit function of time t, initial density n0, diffusion constant D, renormalized coupling gR

and arbitrary normalization point κ (or the equivalent time scale t0 = 1/Dκ2). Since κ does
not appear at all in the unrenormalized theory, we must have κ da(t, n0,D, λ0)/dκ = 0 for
the particle density at fixed bare parameters, or equivalently, after rewriting in terms of the
renormalized density,[

κ
∂

∂κ
+ βg(gR)

∂

∂gR

]
a(t, n0,D, κ, gR) = 0 (60)
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with the β function (58). Yet dimensional analysis tells us that a(t, n0,D, κ, gR) =
κd â(t/t0, n0/κ

d, gR), reducing the number of independent variables to three. Consequently,
equation (60) yields the Callan–Symanzik (CS) equation[

2Dt
∂

∂(Dt)
− dn0

∂

∂n0
+ βg(gR)

∂

∂gR

+ d

]
a(t, n0,D, κ, gR) = 0. (61)

This partial differential equation is solved by the standard method of characteristics, where
one introduces a flow parameter via κ → κ�. The IR asymptotic region then corresponds to
� → 0. For our purposes, it is most convenient to directly employ (κ�)2 = 1/Dt or �2 = t0/t .
Thereby we find

a(t, n0, t0, gR) = (t0/t)d/2a(ñ0(t), g̃R(t)), (62)

with the running initial density

ñ0(t) = (t/t0)
d/2n0, (63)

and the running coupling g̃R defined by the solution of the characteristic equation

�
dg̃R(�)

d�
= −2t

dg̃R(t)

dt
= βg(g̃R), g̃R(� = 1) = g̃R(t = t0) = gR. (64)

The method of characteristics requires a known value of the function, in this case the density, for
some value of the running parameters. Since we chose the normalization point s = 1/t0 > 0
outside the IR-singular region, we may use perturbation theory to calculate the right-hand side
of equation (62). The Callan–Symanzik equation then allows us to transport this result into
the perturbatively inaccessible asymptotic region.

Because of the simple form of the β function (58), the running coupling can be found
exactly by integrating the flow equation (64):

g̃R(t) = g∗
R

[
1 +

g∗
R − gR

gR

(
t0

t

)ε/dc

]−1

(ε �= 0). (65)

Thus we see for ε > 0 that the running renormalized coupling approaches the RG fixed point
(59) as t → ∞, independent of its initial value gR . Thus, universal behaviour emerges in
the asymptotic regime, whose scaling properties are governed by the IR-stable fixed point g∗

R .
Therefore an expansion in powers of g0 is converted, via the CS equation, to an expansion in
powers of ε. For this purpose, we merely need to invert equation (57) to find g0 in terms of
gR: g0 = gR/[1 − gR/g∗

R] = gR + g2
R

/
g∗

R + · · ·. Note that gR = g∗
R formally corresponds

to g0 ∼ λ0/D = ∞, i.e., the annihilation reactions are indeed diffusion limited. Above the
critical dimension (ε < 0), g̃R(t) → 0 algebraically ∼t−|ε|/dc , whereas precisely at dc the
running coupling tends to zero only logarithmically,

g̃R(t) = gR

1 + BkgR ln(t/t0)
(ε = 0). (66)

We may use these findings to already make contact with both the rate equation
and Smoluchowski approximations. For d > dc, the effective reaction rate λ(t) ∼
D(κ�)2ε/dc g̃R(�) = D(Dt)−ε/dc g̃R(t) → const asymptotically, as implicitly taken for granted
in mean-field theory. Below the critical dimension, however, λ(t � t0) ∼ D(Dt)−ε/dcg∗

R or its
density-dependent counterpart λ(a) ∼ Da2ε/(ddc) decrease precisely as in the Smoluchowski
approach. At dc, we have instead λ(t) ∼ D/ ln(t/t0) or λ(a) ∼ D/ln(1/a). Replacing
λ → λ(t) or λ(a) in the mean-field rate equations (1) then immediately yields the results (6)
for k = 2, whereas a(t) ∼ [ln(Dt)/Dt]1/2 for k = 3 at dc = 1.

While we have now established a systematic expansion in terms of gR , a perturbative
calculation in powers of n0 is not useful, since ñ0(t) diverges for t � t0, equation (63). It is
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Figure 5. One-loop and two-loop Feynman diagrams for the particle density, shown for the pair
annihilation reaction k = 2.
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Figure 6. Response function for k = 2.

thus imperative to calculate to all orders in the initial density n0. To this end, we proceed to
group the Feynman graphs for the particle density according to the number of closed loops
involved. First, we obtain the tree diagrams represented by the Dyson equation in figure 3.
When substituted into the right-hand side of equation (62) the limit ñ0 → ∞ will give a
finite result, with leading corrections ∼1/ñ0 ∼ t−d/2 that vanish asymptotically. Explicitly,
replacing the bare with flowing renormalized quantities in equations (62) and (2) at the RG
fixed point gives

a(t) = n0[
1 + n

2/dc

0 (k − 1)(k − �)g∗
R(Dt)d/dc

]dc/2 → Ãk�(Dt)−d/2, (67)

with universal amplitude Ãk� = [(k − 1)(k − �)g∗
R]−1/(k−1).

Next, we consider one- (a) and two-loop (b)–(g) diagrams for the density, depicted in
figure 5 (all for the case k = 2, but the generalization to arbitrary k is obvious). In order to sum
over all powers of n0, the propagators in these diagrams are replaced with response functions,
which include sums over all tree-level dressings. These are depicted in figure 6, along with
the Dyson equation they satisfy. For d � dc each vertex coupling asymptotically flows to the
O(ε) fixed point (59), so the loop expansion corresponds to an ordering in successive powers
of ε = dc − d. However, each order of the expansion, under RG flow, comes in with the
same t−d/2 time dependence. Thus, the loop expansion confirms that the exponent is given
explicitly by the tree-level result, and provides an epsilon expansion for the amplitude of the
density decay.

As mentioned above, the very same renormalizations hold for multi-species annihilation
reactions, for example the pair process A+B → 0. Consequently, in the case of unequal initial
A and B densities (with a0 < b0, say) in dimensions d > dc = 2, the mean-field result that the
minority species vanishes exponentially a(t) ∼ exp(−λt) is recovered, whereas for d < 2 the
direct replacement λ → λ(t) ∼ D(Dt)−1+d/2 correctly yields a stretched exponential decay
a(t) ∼ exp[−const(Dt)d/2], while at dc = 2 the process is slowed down only logarithmically,
a(t) ∼ exp[−constDt/ ln(Dt)]. The asymptotic B particle saturation density is approached
with the same time dependences. The amplitudes in the exponentials were computed exactly
by other means in dimensions d � 2 by Blythe and Bray [19].
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5. Further applications

Now that we have established the basic field-theoretic RG machinery necessary to
systematically compute exponents and amplitudes, we can summarize some more sophisticated
applications. We deal first with systems without phase transitions, before moving on in
section 6 to describe reaction–diffusion systems that display non-equilibrium phase transitions
between active and absorbing states. Our aim in this section will be to give a brief outline
of the results available using RG methods, rather than to delve too deeply into calculational
details.

5.1. Single-species reactions

The kA → �A reaction with � < k. The RG treatment for the general single-species
annihilation reactions kA → �A (� < k) was explicitly covered in the previous sections. The
upper critical dimension of these reactions is dc = 2/(k − 1), and we note in particular that
the reactions A + A → 0 and A + A → A are in the same universality class [33]. We also
emphasize again that, for d � dc, the amplitudes and exponents are universal, independent of
the initial conditions (apart from highly specialized initial conditions, such as those in [73],
where the particles were initially positioned in pairs).

A + A → (0, A) with particle input 0 → A. Droz and Sasvári [74] studied the steady state of
the combined A + A → (0, A) and 0 → A reactions, focusing particularly on how the density
scales with J , the particle input rate. This process appears as an interaction J φ̄ in the action.
Power counting gives [J ] = κ2+d and straightforward arguments show that for d < dc = 2,
and for sufficiently small values of J , the density scales as J d/(d+2), and that the characteristic
relaxation time behaves as τ ∼ J−2/(d+2). Finally, these findings were combined to reproduce
the standard density scaling as t−d/2. Rey and Droz extended this approach to provide explicit
perturbative calculations of the density scaling function [75].

Disordered systems. Another important variation on these simple reaction–diffusion models
is to include quenched disorder in the transport. Various models of quenched random velocity
fields in the A + A → 0 reaction have been investigated using RG techniques, including
uncorrelated (Sinai) disorder [76] and also long-ranged correlated potential disorder [77].
We consider first the case of (weak) Sinai disorder, with velocity correlator 〈vα(x)vβ(y)〉 =
	δα,βδ(x − y) analysed by Richardson and Cardy [76]. An effective action is found by
averaging over this disorder, after which one must renormalize the disorder strength and
diffusion constant in addition to the reaction rate. Unlike the case of pure diffusive transport,
it turns out that the amplitude for the asymptotic density decay rate as a function of time is
non-universal for d < 2: n ∼ Cdt

−d/z, with z = 2 + 2ε2 + O(ε3) and ε = 2 − d, but where
Cd must be non-universal on dimensional grounds. It is only when rewriting the density as a
function of the disorder-averaged diffusion length that a universal scaling relation emerges:
n ∼ Bd〈r2〉−d/2, where Bd is universal. Results were also obtained for d = 2, where the
effects of the uncorrelated disorder are not strong (only the amplitude, but not the exponent,
of the asymptotic density decay is altered). Interestingly, for weak disorder, it was found
that the amplitude of the density decay is reduced, implying that the effective reaction rate is
faster than for the case of purely diffusing reactants. Physically, this results from the disorder
‘pushing’ particles into the same region of space, thus speeding up the kinetics. Theoretically,
this originates in a disorder-induced renormalization of the reaction rate. However, as the
disorder is increased it was also shown that the reaction rate would then begin to decrease.
This stems from a disorder-induced renormalization of the diffusion, which works to slow
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the kinetics, i.e. operates in the opposite direction to the disorder-induced reaction rate
renormalization.

The related case of long-ranged potential disorder, where the random velocity field can
be considered as the gradient of a random potential, was analysed using RG methods in two
dimensions by Park and Deem [77]. In this case, rather more drastic effects were found, with
an altered decay exponent from the case of purely diffusing reactants. Physically, this results
from the different nature of the disordered landscape [78], where for long-ranged potential
disorder, but not of the Sinai type, deep trapping wells exist where, in order to escape the
trap, a particle must move in an unfavourable direction. Park and Deem employed replicas
to analyse the effect of long-ranged disorder, where the correlation function of the quenched
random potential behaves as γ /k2. They obtained that the asymptotic density decay was
modified to t δ−1, where δ is defined in the absence of reaction by the anomalous diffusion
relation 〈r(t)2〉 ∼ t1−δ . Here, δ was found to be a non-universal exponent depending on the
strength of the disorder. The amplitude of the decay also turned out to be a non-universal
quantity.

We also mention that ‘superfast’ reactivity has been found in d = 2 for the A + A → 0
reaction in a model of turbulent flow with potential disorder [79]. This case was also
investigated numerically [80]. RG methods indicated that this regime persists in a more
realistic time-dependent model for the random velocity field [80]. The case of A + A → 0
also in a time-dependent random velocity field, but generated now by a stochastically forced
Navier–Stokes equation, was considered in [81].

Lévy flights in reactive systems. Replacing diffusive propagation with long-ranged Lévy flights
constitutes another important modification to the dynamics of reactive systems. Such Lévy
flights are characterized by a probability for a particle’s jump length � decaying for large �

as P ∼ �−d−σ . For σ < 2 this results in a mean-square displacement in one dimension
growing as t1/σ , faster than the t1/2 law of diffusion. Naturally, one expects that altering the
dynamics of the system in this way will modify the kinetics, as one is effectively making
the system better mixed with decreasing σ . The propagator for Lévy processes becomes
G0(p, ω) = (−iω + DLpσ )−1, meaning that time scales acquire scaling dimension κ−σ rather
than κ−2 (for σ < 2). Consequently, power counting for the A + A → (0, A) reaction gives
[λ] = κσ−d , implying that dc = σ . Once again only the reaction rate is renormalized, which
then flows to an O (ε = σ − d) fixed point under the RG. Dimensional analysis subsequently
fixes the asymptotic density decay rate as t−d/σ , for d < σ [82].

Note that the upper critical dimension is now a function of the Lévy index σ . This feature
has been exploited by Vernon [83] to compute the density amplitude for the A + A → 0
reaction with Lévy flights to first order in ε = σ − d. σ was then set to be slightly larger than
unity and the behaviour of the system was studied numerically in d = 1. This ensures that
ε = σ − d is a genuinely small expansion parameter (i.e., ε � 1) in the physical dimension
d = 1. This contrasts with the case of A + A → 0 with standard diffusion where, in order to
access d = 1, ε = 2 − d must be set to unity. As we have seen, in that situation the expansion
for the density amplitude agrees only rather poorly with numerics [20]. However, for the Lévy
flight case, Vernon demonstrated that the accuracy of the expansion indeed improves with
decreasing ε (i.e. decreasing σ towards unity). This ability to vary the value of dc has also
been used to probe the behaviour of directed percolation and branching–annihilating random
walks [82, 84, 85], see section 6. We also mention that the reaction A + A → 0 with Lévy
flights and quenched disorder was studied using RG methods in [86]. Finally, the authors of
[87] used RG techniques to investigate the case of short-ranged diffusion, but with long-ranged
reactive interactions.
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5.2. Two-species reactions

The homogeneous A + B → 0 reaction. The two-species decay reaction is perhaps the most
relevant to chemical systems. It is also considerably more complicated to analyse, since
the A + B → 0 pair annihilation process leaves the local density difference field a − b

unchanged. This conservation law provides a slow mode in the dynamics that is crucial in
determining the long-time behaviour of the system. We consider first the case where the A

and B particles are initially mixed together throughout the system. If their initial densities are
unequal, say b0 > a0, the asymptotic dynamics will approach a steady concentration of b0 −a0

of B particles, with very few isolated A particles surviving. In this situation, exact results
indicate an exponentially decaying A particle density for d > 2, logarithmic corrections to an
exponential in d = 2 and a stretched exponential exp(−c

√
t) form for d = 1 [16, 18, 19],

where c is a constant. As briefly discussed in section 4.3, these results correspond in the RG
framework to the standard renormalization of the reaction rate.

In contrast, when starting from equal initial densities, the fluctuations in the initial
conditions for the difference field a − b decay to zero slowly, by diffusion. This case was
studied by Toussaint and Wilczek [29] based on the idea that after a time t, on length scales
shorter than the diffusion length ld ∼ t1/2 only whichever of the species happened to be in the
majority in that region initially will remain. In other words, the two species asymptotically
segregate. Since the initial difference between the A and B particle numbers in that region
is proportional to l

d/2
D , this leads to an asymptotic t−d/4 decay [29]. Clearly, for d < 4,

this dominates the faster t−1 mean-field density decay which assumes well-mixed reactants
throughout the system’s temporal evolution. Toussaint and Wilczek explicitly calculated
the amplitude for this decay under the assumption that the only relevant fluctuations are
those in the initial conditions. These results have since been confirmed by exact methods
[16, 17, 31].

Turning to the field-theoretic RG approach, the action (42) for the process A + B → 0
contains diffusive propagators for both A and B species, possibly with unequal diffusion
constants, together with the interaction vertices λāab, λb̄ab and λāb̄ab. Power counting
reveals [λ] = κ2−d , the same as in the A + A → 0 reaction. This implies that the upper
critical dimension is dc = 2, consistent with the behaviour for unequal initial densities. The
renormalization of the A + B → 0 action also follows similarly to the A + A → 0 case.
Surprisingly, however, a full RG calculation of the asymptotic density in the case of unequal
initial densities has not yet been fully carried through. For the equal density case, though,
a field theory approach by Lee and Cardy is available [21]. The Toussaint–Wilczek analysis
reveals a qualitative change in the system’s behaviour in four dimensions, whereas the field
theory yields dc = 2. The resolution of this issue lies in the derivation of an effective theory
valid for 2 < d � 4, where one must allow for the generation of effective initial (t = 0)

‘surface’ terms, incorporating the fluctuations of the initial state. Aside from this initial
fluctuation term, it was shown that the mean-field rate equations suffice [21]. Using the field
theory approach, Lee and Cardy were also able to demonstrate the asymptotic segregation of
the A and B species, and thus provided a more rigorous justification of the Toussaint–Wilczek
result for both the t−d/4 density decay and amplitude for 2 < d < 4. For d � dc = 2, a full
RG calculation becomes necessary. Remarkably, comparisons with exact results for the decay
exponent in one dimension [16, 17, 31] show that this qualitative change in the system does
not lead to any modification in the form of the asymptotic density decay exponent at d = 2
(and so very unlike the case of unequal initial densities). However, actually demonstrating
this using field theory methods has not yet been accomplished, since this would involve a very
difficult non-perturbative sum over the initial ‘surface’ terms.
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Lastly, we also mention related work by Sasamoto and coworkers [88] where the
mA + nB → 0 reaction was studied using field-theoretic techniques, by methods similar
to those of [21]. These authors also found a t−d/4 decay rate independent of m and n (provided
both are non-zero), valid for d < 4/(m + n − 1).

The segregated A+B → 0 reaction, reaction zones. Two-species reactions can also be studied
starting from an initial condition of a segregated state, where a (d − 1)-dimensional surface
separates the two species at time t = 0. Later, as the particles have an opportunity to diffuse
into the interface, a reaction zone forms. Gálfi and Racz first studied these reaction zones
within the local mean-field equations, and were able to extract some rich scaling behaviour:
the width of the reaction region grows as w ∼ t1/6, the width of the depletion region grows,
as might be expected, as t1/2 and the particle densities in the reaction zone scale as t−1/3 [30].

Redner and Ben-Naim [89] proposed a variation of this model where equal and opposite
currents of A and B particles are directed towards one another and a steady-state reaction
zone is formed. In this case it is of interest to study how the various lengths scale with
the particle current J . Within the local mean-field equations, they found that the width of the
reaction region grows as w ∼ J−1/3, whereas the particle densities in the reaction zone scale
as J 2/3. The above initially segregated system may be directly related to this steady-state
case by observing that, in the former, the depletion region is asymptotically much larger than
the reaction zone itself. This means there is a significant region where the density evolves
only by diffusion, and goes from a constant to zero over a range L ∼ t1/2. Since J ∼ −∇a,
we find J ∼ t−1/2, which may be used to translate results between these two cases.

Cornell and Droz [90] extended the analysis of the steady-state problem beyond the
mean-field equations and, with RG motivated arguments, conjectured a reaction zone width
w ∼ J−1/(d+1) for the case d < 2. Lee and Cardy confirmed this result using RG methods
[91]. The essential physics here is that the only dimensional parameters entering the problem
are the reaction rate and the current J . However, for d � 2, RG methods demonstrate that
the asymptotics are independent of the reaction rate. In that case, dimensional analysis fixes
the above scaling form (with logarithmic corrections in d = 2 [21]). Howard and Cardy [92]
provided explicit calculations for the scaling functions. However, numerical investigations
of the exponent of the reaction zone width revealed a surprisingly slow convergence to its
predicted value w ∼ J−1/2 ∼ t1/4 in d = 1 [93]. The resolution of this issue was provided in
[94], where the noise-induced wandering of the front was considered (in contrast to the intrinsic
front profile analysed previously). There it was shown that this noise-induced wandering
dominates over the intrinsic front width and generates a multiplicative logarithmic correction
to the basic w ∼ J−1/2 ∼ t1/4 scaling in d = 1.

Remarkably, one can also study the reaction zones in the initially mixed system with
equal initial densities, since it asymptotically segregates for d < 4 and spontaneously forms
reaction zones. As shown by Lee and Cardy [91], if one assumes that in the depletion regions,
where only diffusion occurs, the density goes from the bulk value t−d/4 to zero in a distance of
order t1/2, the current scales as J ∼ t−(d+2)/4. From this the scaling of the reaction zone width
with time immediately follows. As d → 4 from below, the reaction zone width approaches
t1/2, i.e., the reaction zone size becomes comparable to the depletion zone, consistent with the
breakdown of segregation. This analysis also reveals the true critical dimension dc = 2, with
logarithmic corrections w ∼ (t ln t)1/3 arising from the marginal coupling in d = 2 [21].

Inhomogeneous reactions, shear flow and disorder. One important variant of the A + B → 0
reaction, first analysed by Howard and Barkema [95], concerns its behaviour in the linear
shear flow v = v0yx̂, where x̂ is a unit vector in the x-direction. Since the shear flow tends
to enhance the mixing of the reactants, we expect that the reaction kinetics will differ from
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the homogeneous case. A simple generalization of the qualitative arguments of Toussaint
and Wilczek shows that this is indeed the case. The presence of the shear flow means that
in volumes smaller than (Dt)d/2[1 + (v0t)

2/3]1/2 only the species which was initially in
the majority in that region will remain. Hence, we immediately identify a crossover time
tc ∼ v−1

0 . For t � tc the shear flow is unimportant and the usual t−d/4 density decay is
preserved. However for t � tc, we find a t−(d+2)/4 decay holding in d < 2. Since d = 2 is
clearly the lowest possible dimension for such a shear flow, we see that the shear has essentially
eliminated the non-classical kinetics. These arguments can be put on a more concrete basis by
a field-theoretic RG analysis [95], which shows the shear flow adds terms of the form āv0y∂xa

and b̄v0y∂xb to the action. The effect of these contributions can then be incorporated into
modified propagators, after which the analysis proceeds similarly to the homogeneous case
[21].

The related, but somewhat more complex example of A + B → 0 in a quenched random
velocity field was considered by Oerding [96]. In this case it was assumed that the velocity
at every point r = (x, y) of a d-dimensional system was either parallel or antiparallel to the
x axis and depended only on the coordinate perpendicular to the flow. The velocity field
was modelled by quenched Gaussian random variables with zero mean, but with correlator
〈v(y)v(y′)〉 = f0δ(y−y′). In this situation, qualitative arguments again determine the density
decay exponent. Below three dimensions, a random walk in this random velocity field shows
superdiffusive behaviour in the x-direction [97]. The mean-square displacement in the x
direction averaged over configurations of v(y) is 〈x2〉 ∼ t (5−d)/2 for d < 3. Generalizing the
Toussaint–Wilczek argument then gives an asymptotic density decay of t−(d+3)/8. In this case,
the system still segregates into A and B rich regions, albeit with a modified decay exponent
for d < 3. However, to proceed beyond this result, Oerding applied RG methods to confirm
the decay exponent and also to compute the amplitude of the density decay to first order in
ε = 3 − d [96]. The analysis proceeds along the same lines as the homogeneous case [21],
particularly in the derivation of effective ‘initial’ interaction terms, although care must also be
taken to incorporate the effects of the random velocity field, which include a renormalization
of the diffusion constant. Lastly, we mention work by Deem and Park who analysed the
properties of the A + B → 0 reaction using RG methods in the case of long-ranged potential
disorder [98], and in a model of turbulent flow [79].

Reversible reactions, approach to equilibrium. Rey and Cardy [99] studied the reversible
reaction–diffusion systems A + A � C and A + B � C using RG techniques.
Unlike the case of critical dynamics in equilibrium systems, the authors found that no
new non-trivial exponents were involved. By exploiting the existence of conserved quantities
in the dynamics, they found that, starting from random initial conditions, the approach of the C
species to its equilibrium density takes the form At−d/2 in both cases and in all dimensions. The
exponent follows directly from the conservation laws and is universal, whereas the amplitude
A turns out to be model dependent. Rey and Cardy also considered the cases of correlated
initial conditions and unequal diffusion constants, which exhibit more complicated behaviour,
including a non-monotonic approach to equilibrium.

5.3. Coupled reactions without active phase

The mixed reaction–diffusion system A + A → 0, A + B → 0, B + B → 0 was first studied
using field-theoretic RG methods by Howard [57], motivated by the study of persistence
probabilities (see section 5.4). The renormalization of the theory proceeds again similar to
the case of A + A → 0: only the reaction rates need to be renormalized, and this can be
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performed to all orders in perturbation theory. For d � dc = 2, perturbative calculations
for the density decay rates were only possible in the limit where the density of one species
was very much greater than that of the other. The density decay exponent of the majority
species then follows the standard pure annihilation kinetics, whereas the minority species
decay exponent was computed to O(ε = 2−d) [57]. This one-loop exponent turned out to be
a complicated function of the ratio of the A and B species diffusion constants. The calculation
of this exponent using RG methods has been confirmed and also slightly generalized in [100].
The above mixed reaction–diffusion system also provides a good testing ground in which to
compare RG methods with the Smoluchowski approximation, which had earlier been applied
to the same multi-species reaction–diffusion system [101]. This is a revealing comparison as
the value of the minority species decay exponent is non-trivial for d � 2, and is no longer
fixed purely by dimensional analysis (as is the case for the pure annihilation exponent for
d < 2). This difference follows from the existence of an additional dimensionless parameter
in the multi-species problem, namely the ratio of diffusion constants. Nevertheless, in this
case, it turns out that the Smoluchowski approximation decay exponent is identical to the
RG-improved tree-level result, and provides rather a good approximation in d = 1 [57, 101].
However, this is not always the case for other similar multi-species reaction–diffusion models,
where the Smoluchowski approximation can become quite inaccurate (see [57, 100] for more
details).

The same system but with equal diffusion constants was also analysed using RG methods
in [102], as a model for a steric reaction–diffusion system. As pointed out in [57, 103],
this model has the interesting property that at large times for d � dc = 2, the densities of
both species always decay at the same rate, contrary to the predictions of mean-field theory.
This result follows from the indistinguishability of the two species at large times: below the
upper critical dimension, the reaction rates run to identical fixed points. Since the diffusion
constants are also equal there is then no way to asymptotically distinguish between the two
species, whose densities must therefore decay at the same rate. The same set of reactions,
with equal diffusion constants, was used to study the application of Bogolyubov’s theory of
weakly non-ideal Bose gases to reaction–diffusion systems [104].

Related models were studied in the context of the mass distribution of systems of
aggregating and diffusing particles [56, 105]. In the appropriate limit, the system of [56]
reduced to the reactions A + A → A and A + B → 0. Progress could then be made
in computing to O (ε = 2 − d) the form of the large-time average mass distribution,
for small masses. Comparisons were also made to Smoluchowski-type approximations,
which failed to capture an important feature of the distribution, namely its peculiar form
at small masses, referred to by the authors of [56] as the Kang–Redner anomaly. This
failure could be traced back to an anomalous dimension of the initial mass distribution,
a feature which, as discussed in section 2.4, cannot be picked up by Smoluchowski-
type approximations. Howard and Täuber investigated the mixed annihilation/‘scattering’
reactions A + A → 0, A + A → B + B,B + B → A + A and B + B → 0 [23]. In this
case, for d < 2, to all orders in perturbation theory, the system reduces to the single-species
annihilation case. Physically this is again due to the re-entrance property of random walks:
as soon as two particles of the same species approach each other, they will rapidly annihilate
regardless of the competing ‘scattering’ processes, which only produce particle pairs in close
proximity and therefore with a large probability of immediate subsequent annihilation.

Finally, we mention the multi-species pair annihilation reactions Ai + Aj → 0 with
1 � i < j � q, first studied by Ben-Avraham and Redner [106], and more recently by
Deloubrière and coworkers [107–109]. For unequal initial densities or different reaction rates
between the species, one generically expects the same scaling as for A+B → 0 asymptotically
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(when only the two most numerous, or least reactive, species remain). An interesting special
case therefore emerges when all rates and initial densities coincide. For any q > 2 and in
dimensions d � 2 it was argued that particle species segregation cannot occur, and hence that
the asymptotic density decay rate for equal initial densities and annihilation rates should be
the same as for the single-species reaction A + A → 0. In one dimension, however, particle
segregation does take place for all q < ∞, and leads to a q-dependent power law ∼t−(q−1)/2q

for the total density [107, 108, 110]. For q = 2, this recovers the two-species decay ∼t−1/4,
whereas the single-species behaviour ∼t−1/2 ensues in the limit q → ∞ (since the probability
that a given particle belongs to a given species vanishes in this limit, any species distinction
indeed becomes meaningless). Other special situations arise when the reaction rates are
chosen such that certain subsets of the Ai are equivalent under a symmetry operation. One
may construct scenarios where segregation occurs in dimensions d > 2 despite the absence of
any microscopic conservation law [109].

A variation on this model has a finite number of walkers Ni of each species Ai , initially
distributed within a finite range of the origin. Attention is focused on the asymptotic decay of
the probability that no reactions have occurred up to time t. The case of Ni = 1 for all i reduces
to Fisher’s vicious walkers [111], and the case N1 = 1 and N2 = n reduces to Krapivsky
and Redner’s lion–lamb model [112]. Applying RG methods to the general case, including
unequal diffusion constants for the different species, Cardy and Katori demonstrated that the
probability decays as t−α({Ni }) for d < 2, and calculated the exponent to second order in an
ε = 2 − d expansion [113].

5.4. Persistence

Persistence, in its simplest form, refers to the probability that a particular event has never
occurred in the entire history of an evolving statistical system [114]. Persistence probabilities
are often universal and have been found to be non-trivial even in otherwise well-understood
systems. An intensively studied example concerns the zero-temperature relaxational dynamics
of the Ising model, where one is interested in the persistence probability that, starting
from random initial conditions, a given site has never been visited by a domain wall. In
one dimension, the motion and annihilation of Ising domain walls at zero temperature are
equivalent to an A + A → 0 reaction–diffusion system, where the domain walls in the Ising
system correspond to the reacting particles. An exact solution exists for the persistence
probability in this case [115], but, as usual, the solution casts little light on the question of
universality. A different approach was proposed by Cardy who studied, in the framework of
the reaction–diffusion model, the proportion of sites never visited by any particle [116]. In
d = 1 (though not in higher dimensions) this is the same quantity as the original persistence
probability. Furthermore, since Cardy was able to employ the kind of field-theoretic RG
methods discussed in this review, the issue of universality could also be addressed.

Cardy demonstrated that the probability of never finding a particle at the origin could be
calculated within the field-theoretic formalism through the inclusion of an operator product∏

t δâ
†
0â0,0

. The subscript denotes that the â
†
0â0 operators are associated with the origin,

and the operator-valued Kronecker δ-function ensures that zero weight is assigned to any
histories with a particle at the origin. This operator has the net effect of adding a term
−h

∫ t

0 φ̄(0, t ′)φ(0, t ′) dt ′ to the action, and the persistence probability then corresponds to
the expectation value

〈
exp

(−h
∫ t

0 φ(0, t ′)dt ′
)〉

, averaged with respect to the modified action.
Power counting reveals that [h] ∼ κ2−d , so this coupling is relevant for d < 2. Cardy
showed that renormalization of this interaction required both a renormalized coupling hR and
a multiplicative renormalization of the field φ(0, t). This results in a controlled ε = 2 − d
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expansion for the universal persistence exponent θ = 1/2 + O(ε) [116]. This compares to the
exact result in one dimension by Derrida et al, namely θ = 3/8 [115]. An alternative
approach to this problem was given by Howard [57] in the mixed two-species reaction
A + A → 0, A + B → 0, with immobile B particles (see also section 5.3). In this case
the persistence probability corresponds to the density decay of immobile B particles in d = 1,
in the limit where their density is much smaller than those of the A particles. Howard’s
expansion confirmed the results of Cardy and also extended the computation of the persistence
probability to O (ε = 2 − d). The case of persistence in a system of random walkers which
either coagulate, with probability (q − 2)/(q − 1), or annihilate, with probability 1/(q − 1),
when they meet was also investigated using RG methods by Krishnamurthy et al [117]. In
one dimension, this system models the zero-temperature Glauber dynamics of domain walls
in the q-state Potts model. Krishnamurthy et al were able to compute the probability that a
given particle has never encountered another up to order ε = 2 − d.

A further application of field-theoretic methods to persistence probabilities was introduced
by Howard and Godrèche [118] in their treatment of persistence in the voter model. The
dynamics of the voter model consist of choosing a site at random between t and t + dt ; the
‘voter’ on that site, which can have any of q possible ‘opinions’, then takes the opinion of
one its 2d neighbours, also chosen at random. This model in d = 1 is identical to the
Glauber–Potts model at zero temperature, but can also, in all dimensions, be analysed using a
system of coalescing random walkers. This again opens up the possibility for field-theoretic
RG calculations, as performed in [118]. The persistence probability that a given ‘voter’ has
never changed its opinion up to time t was computed for all d � 2, yielding an unusual
exp[−f (q)(ln t)2] decay in two dimensions. This result confirmed earlier numerical work by
Ben-Naim et al [119].

6. Active to absorbing state transitions

In the previous sections, we have focused on the non-trivial algebraic decay towards the
absorbing state in diffusion-limited reactions of the type kA → �A (with k � 2 and � < k),
and some variants thereof. Universal behaviour naturally emerges also near a continuous
non-equilibrium phase transition that separates an active state, with non-vanishing particle
density as t → ∞, from an inactive, absorbing state. We shall see that generically, such phase
transitions are governed by the power laws of the directed percolation (DP) universality class
[8, 12, 120, 121].

6.1. The directed percolation (DP) universality class

A phase transition separating active from inactive states is readily found when spontaneous
particle decay (A → 0, with rate µ) competes with the production process (A → A + A,
branching rate σ ). In this linear reaction system, a(t) = a(0) exp[−(µ − σ)t] → 0
exponentially if σ < µ. In order to render the particle density a finite in the active state,
i.e., for σ > µ, we need to either restrict the particle number per lattice site (say, to 0 or 1), or
add a binary reaction A + A → (0, A), with rates λ(λ′). The corresponding mean-field rate
equation reads

∂ta(t) = (σ − µ)a(t) − (2λ + λ′)a(t)2, (68)

which for σ > µ implies that asymptotically

a(t) → a∞ = σ − µ

2λ + λ′ , (69)
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which is approached exponentially |a(t) − a∞| ∼ exp[−(σ − µ)t] as t → ∞. Precisely
at the transition σ = µ, equation (68) yields the binary annihilation/coagulation mean-field
power-law decay a(t) ∼ t−1. Generalizing equation (68) to a local particle density and taking
into account diffusive propagation, we obtain with r = (µ − σ)/D:

∂ta(x, t) = −D(r − ∇2)a(x, t) − (2λ + λ′)a(x, t)2, (70)

wherefrom we infer the characteristic length and diffusive time scales ξ ∼ |r|−1/2 and
tc ∼ ξ 2/D ∼ |r|−1 which both diverge upon approaching the critical point at r = 0. Upon
defining the critical exponents

〈a∞〉 ∼ (−r)β (r < 0), 〈a(t)〉 ∼ t−α (r = 0),
(71)

ξ ∼ |r|−ν (r �= 0), tc ∼ ξz/D ∼ |r|−zν (r �= 0),

we identify the mean-field values β = 1, α = 1, ν = 1/2 and z = 2.
In order to properly account for fluctuations near the transition, we apply the field theory

mapping explained in section 3. The ensuing coherent-state path integral action then reads

S[φ̃, φ] =
∫

ddx

{
−φ(tf ) +

∫ tf

0
dt[φ̃(∂t − D∇2)φ − µ(1 − φ̃)φ + σ(1 − φ̃)φ̃φ

− λ(1 − φ̃2)φ2 − λ′(1 − φ̃)φ̃φ2] − n0φ̃(0)

}
, (72)

which constitutes a microscopic representation of the stochastic processes in question.
Equivalently, we may consider the shifted action (with φ̃ = 1 + φ̄)

S[φ̄, φ] =
∫

ddx

∫
dt{φ̄[∂t + D(r − ∇2)]φ − σ φ̄2φ + (2λ + λ′)φ̄φ2 + (λ + λ′)φ̄2φ2}. (73)

Since the ongoing particle production and decay processes should quickly obliterate any
remnants from the initial state, we have dropped the term n0φ̄(0), and extended the temporal
integral from −∞ to ∞. The classical field equations δS/δφ = 0 (always solved by φ̄ = 0)
and δS/δφ̄ = 0 yield the mean-field equation of motion (70).

Our goal is to construct an appropriate mesoscopic field theory that captures the universal
properties at the phase transition. Recall that the continuum limit is not unique: we are at
liberty to choose the scaling dimensions of the fluctuating fields φ̄(x, t) and φ(x, t), provided
we maintain that their product scales as a density, i.e., [φ̄φ] = κd with arbitrary momentum
scale κ . In RG terms, there exists a redundant parameter [122] that needs to be eliminated
through suitable rescaling. To this end, we note that the scaling properties are encoded in
the propagator G(x, t) = 〈φ̄(x, t)φ(0, 0)〉. The lowest-order fluctuation correction to the
tree-level expression

G0(p, ω) = 1

−iω + D(r + p2)
(74)

is given by the Feynman graph depicted in figure 7(b, top), which involves the product
∼ − σ(2λ + λ′) of the two three-point vertices in (73). Similarly, the one-loop correction to
either of these vertices comes with the very same factor. It is thus convenient to choose the
scaling dimensions of the fields in such a manner that the three-point vertices attain identical
scaling dimensions. This is achieved via introducing new fields s̄(x, t) = φ̄(x, t)

√
(2λ + λ′)/σ

and s(x, t) = φ(x, t)
√

σ/(2λ + λ′), whence

S[s̄, s] =
∫

ddx

∫
dt{s̄[∂t + D(r − ∇2)]s − u(s̄ − s)s̄s + (λ + λ′)s̄2s2}. (75)

Here, u = √
σ(2λ + λ′) is the new effective coupling. Since [σ ] = κ2 and [λ] = κ2−d = [λ′],

its scaling dimension is [u] = κ2−d/2, and we therefore expect dc = 4 to be the upper
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Figure 7. DP field theory: (a) vertices, and (b) one-loop Feynman graphs for the two- and
three-point vertex functions.

critical dimension. Moreover, [(λ + λ′)/u] = κ−d/2 scales to zero under subsequent RG
transformations: compared to u, both couplings λ and λ′ alone constitute irrelevant parameters
which will not affect the leading universal scaling properties.

Upon omitting these irrelevant terms, we finally arrive at the desired effective field theory
action

Seff[s̄, s] =
∫

ddx

∫
dt{s̄[∂t + D(r − ∇2)]s − u(s̄ − s)s̄s}. (76)

It displays duality invariance with respect to time (rapidity) inversion, s(x, t) ↔ −s̄(x,−t).
Remarkably, the action (76) was first encountered and analysed in particle physics under
the guise of Reggeon field theory [123, 124]. It was subsequently noticed that it actually
represents a stochastic (‘Gribov’) process [125, 126], and its equivalence to the geometric
problem of directed percolation was established [120, 127, 128]. In directed bond percolation,
randomly placed bonds connecting regular lattice sites can only be traversed in a given preferred
special direction, which is to be identified with t in the dynamical problem. Particle decay,
coagulation and production respectively correspond to dead ends, merging links or branching
of the ensuing percolating structures. Near the percolation threshold, the scaling properties of
the critical percolation cluster are characterized by the exponents governing the divergences of
the transverse correlation length ν⊥ = ν and of the longitudinal (in the t direction) correlation
length ν‖ = zν. (For more details, we refer the reader to [8, 12].)

From our derivation of the effective action (76) above, it is already apparent that either
pair annihilation or coagulation lead to identical critical properties. Instead of these binary
reactions, we could also have employed site occupation number restrictions to render the
particle density finite in the active phase. Van Wijland has recently shown how such local
constraints limiting ni to values of 0, 1 only can be implemented into the second-quantized
bosonic formalism [129], thus avoiding a more cumbersome representation in terms of spin
operators. The resulting action acquires exponential terms for each field φ̃. For the competing
first-order processes A → (0, 2A) one eventually obtains

Srest[φ̃, φ] =
∫

ddx

∫
dt[−µ(1 − φ̃)φ e−vφ̃φ + σ(1 − φ̃)φ̃φ e−2vφ̃φ], (77)

where we have merely written the bulk reaction part of the action, and v is a parameter
of scaling dimension [v] = κ−d which originates from taking the continuum limit. Since
therefore v will scale to zero under RG transformations, we may expand the exponentials,
whereupon the leading terms in the corresponding shifted action assume form (75), with
2λ + λ′ = (2σ − µ)v ≈ σv and λ + λ′ = 4σv. Thus, we are again led to the effective DP field
theory action (76) (despite the formally negative value for λ).

Following the procedure outlined in section 3.5 [1], we find that the field theory action
(76) is equivalent to the stochastic differential equation

∂t s = D(∇2 − r)s − us2 +
√

2usη, (78)
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with 〈η〉 = 0, 〈η(x, t)η(x′, t ′)〉 = δ(x − x′)δ(t − t ′), or, upon setting ζ = √
2usη

in order to eliminate the square-root multiplicative noise, 〈ζ 〉 = 0, 〈ζ(x, t)ζ(x′, t ′)〉 =
2us(x, t)δ(x − x′)δ(t − t ′). We may view these resulting terms as representing the leading-
order contributions in a power-law expansion of the reaction and noise correlation functionals
R[s] = r + us + · · · and N [s] = u + · · · with respect to the density s of activity in

∂t s = D(∇2 − R[s])s + ζ, 〈ζ(x, t)ζ(x′, t ′)〉 = 2sN [s]δ(x − x′)δ(t − t ′), (79)

which represents the general Langevin description of systems displaying active and absorbing
states [12]. A factor s has been factored out of both R and N here, since the stochastic
processes must all cease in the inactive, absorbing phase. These considerations establish the
DP hypothesis: the critical properties near an active to absorbing state phase transition should
generically be governed by the directed percolation scaling exponents, provided the stochastic
process is Markovian, the order parameter decoupled from any other slow variable, there is no
quenched disorder in the rates and no special symmetries require that any of the lowest-order
expansion coefficients r or u vanish [120, 121]. There is even a suggestion that the glass
transition in supercooled liquids might be governed by a zero-temperature fixed point, with
critical exponents in the DP universality class [130].

6.2. Renormalization and DP critical exponents

The asymptotic scaling behaviour of DP can be inferred from the renormalized propagator
G(p, ω) = �(1,1)(p,−ω)−1. The tree contribution is given by (74); by combining the two
three-point vertices in figure 7(a) one arrives at the one-loop Feynman graph depicted in
figure 7(b, top), whose corresponding analytic expression reads in Fourier space

2u2
∫

ddp′

(2π)d

∫
dω′

2π

1

−i(ω′ + ω/2) + D[r + (p′ + p/2)2]

× 1

−i(−ω′ + ω/2) + D[r + (−p′ + p/2)2]
, (80)

if we split the external momentum and frequency symmetrically inside the loop. The
integration over the internal frequency ω′ is now readily performed by means of the residue
theorem, whereupon we obtain

�(1,1)(p, ω) = iω + D(r + p2) +
u2

D

∫
ddp′

(2π)d

1

iω/2D + r + p2/4 + p′2 . (81)

The loop contribution displays IR singularities as r → 0, ω → 0, and p → 0. In the ultraviolet,
it diverges in dimensions d � 2. The leading divergence, however, can be absorbed into a
fluctuation-induced shift of the critical point away from the mean-field r = 0. On physical
grounds one must demand G(p = 0, ω = 0)−1 = 0 at criticality. Consequently, the new
critical point is given self-consistently by

rc = − u2

D2

∫
ddp′

(2π)d

1

rc + p′2 + O(u4). (82)

Fluctuations tend to increase the likelihood of extinction (if the density is already low, a chance
fluctuation may drive the system into the absorbing state), and thus reduce the parameter regime
of the active phase as compared with mean-field theory. In dimensional regularization, one
assigns the value

Is(r) =
∫

ddp

(2π)d

1

(r + p2)s
= �(s − d/2)

2dπd/2�(s)
r−s+d/2, (83)
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also to those momentum integrals that are UV divergent. The solution to (82) then reads
explicitly |rc| = [2Adu

2/(d − 2)(4 − d)D2]2/(4−d) with Ad = �(3 − d/2)/2d−1πd/2. The
shift of the transition point thus depends non-analytically on ε = 4 − d.

Let us introduce the true distance from the critical point τ = r − rc. Upon inserting (82)
into (81), we find

�(1,1)(p, ω) = iω + D(τ + p2) − u2

D

∫
ddp′

(2π)d

iω/2D + τ + p2/4

p′2(iω/2D + τ + p2/4 + p′2)
+ O(u4). (84)

The integral here is UV divergent in dimensions d � 4. There are three such singular terms,
proportional to iω, Dτ and Dp2, respectively. Consequently, we require three independent
multiplicative renormalization factors to render the two-point function or propagator finite. In
addition, the three-point vertex functions �(1,2) and �(2,1) carry (identical) UV singularities
for d � 4. We thus define renormalized parameters DR, τR and uR , as well as renormalized
fields sR according to

sR = Z1/2
s s, DR = ZDD, τR = Zττκ−2, uR = ZuuA

1/2
d κ(d−4)/2. (85)

As a consequence of rapidity inversion invariance, s̃R = Z
1/2
s s̃ as well, whence �

(1,1)
R =

Z−1
s �(1,1). In the minimal subtraction prescription, the Z factors contain merely the 1/ε poles

with their residues. Choosing the normalization point τR = 1, ω = 0, p = 0, we may read off
Zs and the products ZsZDZτ , ZsZD from the three terms on the right-hand side of (84), and
therefrom to one-loop order

Zs = 1 − u2

2D2

Adκ
−ε

ε
, ZD = 1 +

u2

4D2

Adκ
−ε

ε
, Zτ = 1 − 3u2

4D2

Adκ
−ε

ε
. (86)

This leaves just Zu to be determined. It is readily computed from the three-point function �(1,2),
whose one-loop graph is depicted in figure 7(b, bottom), or from �(2,1). At the normalization
point (NP),

�(1,2)|NP = −�(2,1)|NP = −2u

(
1 − 2u2

D2

∫
ddp

(2π)d

1

(τ + p2)2

) ∣∣∣∣
τ=κ2

= −2u

(
1 − 2u2

D2

Adκ
−ε

ε

)
, (87)

which directly yields the product Z
3/2
s Zu, and with (86),

Zu = 1 − 5u2

4D2

Adκ
−ε

ε
. (88)

Since all higher vertex functions are UV finite, this completes the renormalization procedure
for the DP field theory (76). We identify the effective coupling constant as v = u2/D2, with
renormalized counterpart

vR = ZvvAdκ
d−4, Zv = Z2

u

/
Z2

D. (89)

We may now write the DP generalization of the Callan–Symanzik equation (60) for the
propagator, recalling that GR = ZsG:[

κ
∂

∂κ
− ζs + ζDDR

∂

∂DR

+ ζτ τR

∂

∂τR

+ βv(vR)
∂

∂vR

]
GR(p, ω,DR, τR, κ, vR) = 0, (90)

where

ζs(vR) = κ
∂

∂κ
ln Zs = vR

2
+ O

(
v2

R

)
, (91)
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ζD(vR) = κ
∂

∂κ
ln

DR

D
= −vR

4
+ O

(
v2

R

)
, (92)

ζτ (vR) = κ
∂

∂κ
ln

τR

τ
= −2 +

3vR

4
+ O

(
v2

R

)
, (93)

βv(vR) = κ
∂

∂κ
vR = vR

[−ε + 3vR + O
(
v2

R

)]
. (94)

In dimensions d < dc = 4(ε > 0), the β function (94) yields a non-trivial stable fixed point

v∗
R = ε

3
+ O(ε2). (95)

Solving (90) with the method of characteristics, κ → κ�, and using the form (74), we find in
its vicinity the scaling law

GR(p, ω,DR, τR, κ, vR)−1 ∼ p2DR�ζs(v
∗
R)+ζD(v∗

R)�̂

(
p
κ�

,
ω

DR�ζD(v∗
R)(κ�)2

, τR�ζτ (v
∗
R), v∗

R

)
,

(96)

with �̂ representing a dimensionless scaling function. Upon employing the matching condition
�2 = p2/κ2, this yields

GR(p, ω,DR, τR, κ, v∗
R)−1 ∼ DRκ2|p|2−η�̂

(
1,

ω

DR|p|z , τR|p|−1/ν, v∗
R

)
, (97)

with the three independent scaling exponents

η = −ζs(v
∗
R) − ζD(v∗

R) = − ε

12
+ O(ε2), (98)

z = 2 + ζD(v∗
R) = 2 − ε

12
+ O(ε2), (99)

ν−1 = −ζτ (v
∗
R) = 2 − ε

4
+ O(ε2). (100)

Alternatively, with � = |τR|ν we arrive at GR ∼ |τ |−γ , where

γ = ν(2 − η) = 1 +
ε

6
+ O(ε2). (101)

In a similar manner, we obtain in the active phase for the average 〈sR〉:[
κ

∂

∂κ
− ζs

2
+ ζDDR

∂

∂DR

+ ζτ τR

∂

∂τR

+ βv(vR)
∂

∂vR

]
〈sR(t,DR, τR, κ, vR)〉 = 0, (102)

whose solution near the stable fixed point v∗
R reads

〈sR(t,DR, τR, κ, vR)〉 ∼ κd/2�[d−ζs (v
∗
R)]/2ŝ(DRκ2�2+ζD(v∗

R)t, τR�ζτ (v
∗
R), v∗

R), (103)

where 〈sR〉 = κd/2ŝ. Consequently, matching � = |τR|ν and � = (t/DRκ2)−1/z, respectively,
gives 〈sR〉 ∼ |τR|β and 〈sR〉 ∼ t−α , with

β = ν[d − ζs(v
∗
R)]

2
= ν(d + η + z − 2)

2
= 1 − ε

6
+ O(ε2), (104)

α = β

zν
= 1 − ε

4
+ O(ε2). (105)

Field-theoretic tools in conjunction with the RG therefore allow us to define the generic
universality class for active to absorbing state phase transitions, derive the asymptotic scaling
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laws in the vicinity of the critical point and compute the critical exponents perturbationally
by means of a systematic expansion about the upper critical dimension dc = 4. In higher
dimensions d > 4, the only fixed point is vR = 0, and we recover the mean-field scaling
behaviour. Precisely at the upper critical dimension, there appear logarithmic corrections.
These, as well as the two-loop results for the critical exponents and the scaling behaviour of
various other observables, are presented in [12]. Monte Carlo simulations have determined
the numerical values for the DP critical exponents in dimensions d < 4 to high precision
[8, 9], and confirmed the logarithmic corrections predicted by the RG [131, 132].

6.3. Variants of directed percolation processes

Multi-species DP processes. We argued in section 6.1 that absorbing to active phase transitions
should generically be described by the critical exponents of DP. This far-reaching assertion is
based on the structure of equation (79), identifying the field s as some coarse-grained ‘activity’
density [120, 121]. It is indeed very remarkable that the DP universality class extends to
multiple species of reacting agents. Consider, for example, the reactions A � A + A,A → 0,
coupled to a similar system B � B + B,B → 0 via the processes A → B + B,A + A → B,
and its obvious extension to additional reactants. Inclusion of higher-order reactions turns
out not to change the critical properties, since the corresponding couplings are all irrelevant
under the RG. One then arrives at the following effective Langevin description for coupled
coarse-grained density fields si [133, 69]:

∂t si = Di(∇2 − Ri[si])si + ζi, Ri[si] = ri +
∑

j

gij sj + · · · (106)

〈ζi(x, t)ζj (x′, t ′)〉 = 2siNi[si]δij δ(x − x′)δ(t − t ′), Ni[si] = ui + · · · , (107)

generalizing equation (79). As Janssen has demonstrated, the ensuing renormalization factors
are all given precisely by those of the single-species process, whence the critical point is
generically described by the ordinary DP scaling exponents.

Yet if first-order particle transmutations A → B, etc are added (note these are
also effectively generated by the above reactions), leading to additional terms ∼∑

j �=i gj sj

in equation (106), one finds that the ensuing RG flow typically produces asymptotically
unidirectional processes. One then encounters multicritical behaviour, if several control
parameters ri vanish simultaneously [134–137]. While the critical exponents η, ν, z and γ

remain unchanged, there emerges in this situation a hierarchy of order parameter exponents
βk = 1/2k−O(ε) on the kth level, e.g., β1 = β = 1−ε/6+O(ε2), β2 = 1/2−13ε/96+O(ε2),
and similarly for the decay exponents αk = βk/zν. The crossover exponent associated with
the multicritical point can be shown to be φ = 1 to all orders in the perturbation expansion
[69].

Dynamic isotropic percolation (dIP). An alternative mechanism to generate novel critical
behaviour in a two-species system operates via a passive, spatially fixed and initially
homogeneously distributed species X that couples to the diffusing and reproducing agents
A → A + A through the decay processes A → X and X + A → X. Upon integrating out the
fluctuations of the inert species X, and expanding about the mean-field solution, the resulting
effective action eventually becomes

Seff[s̄, s] =
∫

ddx

∫
dt

{
s̄[∂t + D(r − ∇2)]s − us̄2s + Dus̄s

∫ t

−∞
s(t ′) dt ′

}
, (108)
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which corresponds to a stochastic differential equation

∂t s = D(∇2 − r)s − Dus

∫ t

−∞
s(t ′) dt ′ +

√
2usη, (109)

with 〈η〉 = 0, 〈η(x, t)η(x′, t ′)〉 = δ(x − x′)δ(t − t ′) as in DP. Thus, the induced decay
rate is proportional to the product of the densities of active agents s and the ‘debris’
D

∫ t

−∞ s(t ′) dt ′ produced by decayed agents A. More generally, the action (108) describes the
general epidemic process [138–141], in contrast with the simple epidemic process represented
by DP.

We may now consider the quasi-static limit of the field theory (108) by introducing the
fields ϕ̄ = s̄(t → ∞), and ϕ = D

∫ ∞
−∞ s(t ′) dt ′, whereupon we arrive at the action

Sqst[ϕ̄, ϕ] =
∫

ddxϕ̄[r − ∇2 − u(ϕ̄ − ϕ)]ϕ. (110)

Note, however, that as a manifestation of its dynamic origin, this quasi-static field theory must
be supplemented by causality rules. The action (110) then describes the scaling properties of
critical isotropic percolation clusters [142]. Thus, as first remarked by Grassberger [138], the
general epidemic process is governed by the static critical exponents of isotropic percolation.
These are readily obtained by means of a RG analysis in an ε expansion about the upper
critical dimension dc = 6. The one-loop diagrams are precisely those of figure 7, with the
static propagator G0(p) = (r +p2)−1. The explicit computation proceeds as outlined in section
6.2 (for more details, see, e.g., [12]), and yields η = −ε/21+O(ε2), ν−1 = 2−5ε/21+O(ε2)

and β = 1 − ε/7 + O(ε2), with ε = 6 − d.
In order to characterize the dynamic critical properties, however, we must return to

the full action (108). Yet its structure once again leads to the Feynman graphs depicted
in figure 7, but with the second vertex in (a) carrying a temporal integration. One then
finds z = 2 − ε/6 + O(ε2), which completes the characterization of this dynamic isotropic
percolation (dIP) universality class [139–141]. Precisely as for DP processes, multi-species
generalizations generically yield the same critical behaviour, except at special multicritical
points, characterized again by a crossover exponent φ = 1 [69].

Lévy flight DP. Long-range interactions, as can be modelled by Lévy flight contributions
DLpσ to the propagators, may modify the critical behaviour of both DP and dIP
[82, 84]. Two situations must be distinguished [143]: for 2 − σ = O(ε), a double
expansion with respect to both ε and 2 − σ is required; on the other hand, if 2 − σ = O(1),
the ordinary diffusive contribution Dp2 to the propagator becomes irrelevant, whereas the
non-analytic term DLpσ acquires no fluctuation corrections, whence ZsZDL

= 1 to all
orders in perturbation theory. Subsequent scaling analysis yields the critical dimensions
dc = 2σ for DP and dc = 3σ for dIP, respectively. To one-loop order, one then
finds at the new long-range fixed points, with ε = d − dc: η = 2 − σ , and for DP:
z = σ − ε/7 + O(ε2), ν−1 = σ − 2ε/7 + O(ε2), β = 1 − 2ε/7σ + O(ε2); for dIP:
z = σ − 3ε/16 + O(ε2), ν−1 = σ − ε/4 + O(ε2), β = 1 − ε/4σ + O(ε2).

DP coupled to a non-critical conserved density (DP-C). A variant on the DP reaction scheme
A ↔ A + A with decay A → 0 is to require the A particle decay to be catalyzed by an
additional species C, via A + C → C. The C particles move diffusively and are conserved by
the reaction. In the population dynamics language, the C particles can be said to poison the A

population [144]. Related is a model of infection dynamics, A + B → 2B,B → A, where A

and B respectively represent healthy and sick individuals [145, 146]. The latter model reduces
to the former in the case of equal diffusion constants DA = DB (see [12] for details).



R120 Topical Review

(b)
m

(a) σ

λ λ

...
m-1

m-1

...

. ..

Figure 8. BARW field theory: (a) branching (top) and annihilation (bottom) vertices; (b) one-loop
Feynman diagrams generating the A → (m − 1)A process, and renormalizing the branching and
annihilation rates, respectively.

These systems exhibit, like DP, an upper critical dimension dc = 4. Below this dimension
there exist three different regimes, depending on whether the ratio of diffusion constants
greater than, equal to or less than unity. For the case DA > DB , the resulting RG flows run
away, indicating a fluctuation-induced first-order transition [146]. For the case DA = DB the
critical exponents are given by z = 2, ν = 2/d (exact) and β = 1 − ε/32 + O(ε2); while for
DA < DB a distinct fixed point is obtained [145] with exact values z = 2, ν = 2/d and β = 1.

6.4. Branching and annihilating random walks (BARW)

Branching and annihilating random walks are defined through diffusing particles A subject to
the competing branching reactions A → (m + 1)A (with rate σ ) and annihilation processes
kA → 0 (rate λ) [147]. The corresponding mean-field rate equation for the particle density
reads

∂ta(t) = σa(t) − kλa(t)k, (111)

with the solution

a(t) = a∞
(1 + [(a∞/a0)k−1 − 1] e−(k−1)σ t )1/(k−1)

, (112)

which for t � 1/σ approaches the finite density a∞ = (σ/kλ)1/(k−1), independent of the
initial density a0. Mean-field theory therefore predicts only an active phase, provided σ > 0.
At σc = 0, there exists a ‘degenerate’ critical point, whose critical exponents are given by the
pure diffusion-limited annihilation model, η = 0, ν = 1/2, z = 2, γ = 1, α = β = 1/(k−1).

This mean-field scenario should hold in dimensions d > dc = 2/(k − 1), as determined
from the scaling dimension of the annihilation process. The branching rate with scaling
dimension [σ ] = κ2 constitutes a relevant parameter. However, as initially established in
Monte Carlo simulations [8, 9, 147], for k = 2 fluctuations invalidate this simple picture,
rendering BARW considerably more interesting [148, 149]. Indeed, one has to distinguish
the cases of odd and even offspring numbers m: whereas the active to absorbing transition in
BARW with odd m is described by the DP critical exponents, provided σc > 0, BARW with
even m define a genuinely different parity-conserving (PC) universality class, named after its
unique feature of conserving the particle number parity under the involved reactions.

The field-theoretic representation for BARW with k = 2 and m offspring particles,
omitting the temporal boundary terms, reads

S[φ̃, φ] =
∫

ddx

∫
dt[φ̃(∂t − D∇2)φ + σ(1 − φ̃m)φ̃φ − λ(1 − φ̃2)φ2], (113)

and the corresponding vertices are shown in figure 8(a). Upon combining the branching
with the pair annihilation processes as in the top one-loop diagram in figure 8(b), we
see that in addition to the original A → (m + 1)A reaction all lower branching processes
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A → (m − 1)A, (m − 3)A, . . . become generated. In a first coarse-graining step, all these
reactions then must be added to the ‘microscopic’ field theory (113). Furthermore, upon
inspecting the renormalization of the branching and annihilation rates by the one-loop Feynman
graphs depicted in figure 8(b), we see that identical loop integrals govern the corresponding
UV singularities, but the renormalization of the branching process with m offspring carries
a relative combinatorial factor of m(m + 1)/2. Since the loop contributions carry a negative
sign, the resulting downward shift of the branching rate’s scaling dimension is lowest for
m = 1 and m = 2, respectively. For odd offspring number m, the most relevant emerging
branching process thus is A → A + A, but in addition the spontaneous decay A → 0 is
generated [148, 149]. Consequently, the effective field theory that should describe BARW
with odd m becomes (76), and the phase transition is predicted to be in the DP universality
class. This is true provided the induced particle decay rate may overcome the generated or
renormalized branching rate with single offspring, and thus shift the critical point to σc > 0.
Within a perturbational analysis with respect to the annihilation rate λ, this happens only in
low dimensions d � 2 [148, 149]. In a recent non-perturbative numerical RG study, however,
the emergence of an inactive phase and DP critical behaviour was found in higher dimensions
as well [150, 151].

It now becomes apparent why BARW with even offspring number should behave
qualitatively differently: in this case, spontaneous particle decay processes A → 0 cannot
be generated, even on a coarse-grained level. This is related to the fact that in the branching
processes A → (m+1)A as well as the pair annihilation A+A → 0 the particle number parity
remains conserved; correspondingly, there are two distinct absorbing states for even-offspring
BARW, namely the strictly empty lattice if the initial particle number N0 is even, and a single
remaining particle, if N0 is odd. In the field theory (113), this conservation law and symmetry
are reflected in the invariance with respect to simultaneously taking φ → −φ and φ̃ → −φ̃.
This invariance must be carefully preserved in any subsequent analysis. Performing the field
shift φ̃ = 1 + φ̄ masks the discrete inversion symmetry; worse, it becomes lost entirely
if afterwards, based on mere power counting arguments, only the leading powers in φ̃ are
retained, whence one would be erroneously led to the DP effective action. It is therefore
safest to work with the unshifted action (113), but adding the generated branching processes
with m − 2,m − 4, . . . offspring particles. As explained before, the most relevant branching
reaction will be the one with two offspring. Setting m = 2 in the action (113) indeed
yields a renormalizable theory, namely the effective action for the PC universality class,
with the particle production processes with higher offspring numbers constituting irrelevant
perturbations.

The bare propagator of this theory is similar to equation (74),

G0(p, ω) = 1

−iω + σ + Dp2
(114)

but contains the branching rate σ as a mass term. The branching rate also appears in the
three-point vertex, figure 8(a, top). Since we need to follow the RG flow of the renormalized
reaction rates

σR = Zσσ/Dκ2, λR = ZλλCd/Dκ2−d , (115)

with Cd = �(2 − d/2)/2d−1πd/2, we must set the normalization point either at finite external
momentum p = 2κ or frequency/Laplace transform variable iω = s = 2Dκ2. From the
one-loop Feynman graphs in figure 8(b) that respectively describe the propagator, branching
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Figure 9. Phase diagram and unstable RG fixed point 1/g∗
R for even-offspring BARW

(PC universality class) as function of dimension d (from [149]).

vertex and annihilation vertex renormalizations, one then finds that the UV singularities, for
any value of σ , can be absorbed into the Z factors

Zσ = 1 − 3Cd

2 − d

λ/D

(κ2 + σ/D)1−d/2
, Zλ = 1 − Cd

2 − d

λ/D

(κ2 + σ/D)1−d/2
, (116)

which are functions of both σ/D and λ/D, as in other crossover theories with relevant
parameters. With ζσ = κ∂κ ln(σR/σ) and ζλ = κ∂κ ln(λR/λ), we are thus led to the coupled
RG flow equations [148, 149]

�
dσR(�)

d�
= σR(�)ζσ (�) = σR(�)

(
−2 +

3λR(�)

[1 + σR(�)]2−d/2

)
, (117)

�
dλR(�)

d�
= λR(�)ζλ(�) = λR(�)

(
d − 2 +

λR(�)

[1 + σR(�)]2−d/2

)
. (118)

The effective coupling controlling the RG flows, to one-loop order at least, is gR =
λR/(1 + σR)2−d/2. For σR = 0, that is for the pure pair annihilation model, according to
equation (118) gR → g∗

R = 2 −d, which after trivial rescaling corresponds to the annihilation
fixed point (59). For σ > 0, however, we expect σR(�) → ∞, whereupon the RG β function
for the coupling gR becomes

βg(gR) → gR

[
ζλ −

(
2 − d

2

)
ζσ

]
= gR

[
2 − 10 − 3d

2
gR

]
, (119)

which yields the Gaussian fixed point at gR = 0 and a critical fixed point g∗
c = 4/(10 − 3d).

Yet since the bare reaction rate corresponding to the pure annihilation fixed point is already
infinite, see section 4.2 following equation (57), we must demand on physical grounds that
g∗

c � 2 − d, whence we infer that the critical fixed point comes into existence only for
d < d ′

c = 4/3. If initially gR < g∗
c , gR(�) → 0, consistent with σR(�) ∼ �−2 → ∞ as

� → 0. This Gaussian fixed point, characterized by naive scaling dimensions, describes the
active phase with exponential correlations. On the other hand, for gR > g∗

c , and provided
that d < d ′

c, σR(�) → 0 and gR(�) → 2 − d, which describes an inactive phase that in its
entirety is governed by the pure annihilation model power laws. The phase transition in the PC
universality class, which apparently has no counterpart in mean-field theory, is thus triggered
through fluctuations that drive the branching rate irrelevant. In contrast to equilibrium systems,
fluctuations here open up a novel phase rather than destroying it, and we may view the new
borderline dimension d ′

c as an ‘inverted lower’ critical dimension, since the phase transition
only exists for d < d ′

c. The phase diagram as function of spatial dimension, within the
one-loop approximation, is summarized in figure 9.



Topical Review R123

In order to obtain the asymptotic scaling behaviour for the particle density, we write the
solution of its RG equation in the vicinity of an RG fixed point g∗

R , which reads

a(t,DR, σR, λR, κ) = κd�da
(
DRκ2�2t, σR�ζσ (g∗

R), λR�ζλ(g
∗
R)

)
, (120)

since there is no renormalization of the fields or diffusion constant to one-loop order, which
immediately implies η = 0 and z = 2. For d ′

c < d � 2 the branching rate σR plays the
role of the critical control parameter τR in DP, and g∗

R = 2 − d = ε is the annihilation fixed
point. In an ε expansion about the upper critical dimension dc = 2, we thus obtain the scaling
exponents

ν−1 = −ζσ (g∗
R) = 2 − 3ε, z = 2, α = d/2, β = dν = zνα, (121)

the latter via matching σR�ζσ (g∗
R) = 1. Note that ν diverges as ε → 2/3 or d → d ′

c.
Yet the PC phase transition at σc > 0 can obviously not be captured by such an ε

expansion. One is instead forced to perform the analysis at fixed dimension, without the
benefit of a small expansion parameter. Exploiting the mean-field result for the density in the
active phase, for d < d ′

c we may write in the vicinity of g∗
c :

a(t,DR, σR, λR, κ) = κd σR

λR

�d+ζσ (g∗
c )−ζλ(g

∗
c )ã

(
σRtκ2�2+ζσ (g∗

c ), εR�ζε(g
∗
c )
)
, (122)

where ε ∝ g∗
c − g constitutes the control parameter for the transition, and ζε = dβg/dgR .

Now setting εR�ζε(g
∗
c ) = 1, we obtain with ζσ (g∗

c ) = −2(4 − 3d)/(10 − 3d), ζλ(g
∗
c ) =

−(4 − d)(4 − 3d)/(10 − 3d), and ζε(g
∗
c ) = −2, the critical exponents [148, 149]

ν = 2 + ζσ (g∗
c )

−ζε(g∗
c )

= 3

10 − 3d
, z = 2, β = d + ζσ (g∗

c ) − ζλ(g
∗
c )

−ζε(g∗
c )

= 4

10 − 3d
.

(123)

Note that the presence of the dangerously irrelevant parameter 1/σR precludes a direct
calculation of the power laws precisely at the critical point (rather than approaching it
from the active phase), and the derivation of ‘hyperscaling’ relations such as β = zνα.
Numerically, the PC critical exponents in one dimension have been determined to be
ν ≈ 1.6, z ≈ 1.75, α ≈ 0.27 and β ≈ 0.92 [8, 9]. Perhaps not too surprisingly, the
predictions (123) from the uncontrolled fixed-dimension expansion yield rather poor values at
d = 1. Unfortunately, an extension to, say, higher loop order, is not straightforward, and an
improved analytic treatment has hitherto not been achieved.

6.5. BARW variants and higher-order processes

Lévy flight BARW. Simulations clearly cannot access the PC borderline critical dimension
d ′

c. This difficulty can be overcome by changing from ordinary diffusion to Lévy flight
propagation ∼DLpσ . The existence of the power-law inactive phase is then controlled by the
Lévy exponent σ , and in one dimension emerges for σ > σc = 3/2 [85].

Multi-species generalizations of BARW. There is a straightforward generalization of the two-
offspring BARW to a variant with q interacting species Ai , according to Ai → 3Ai (rate σ ),
Ai → Ai + 2Aj(j �= i, rate σ ′) and Ai + Ai → 0 only for particles of the same species.
Through simple combinatorics σR/σ ′

R → 0 under renormalization, and the process with rate
σ ′ dominates asymptotically. The coarse-grained effective theory then merely contains the
rate σ ′

R , corresponding formally to the limit q → ∞, and can be analysed exactly. It displays
merely a degenerate phase transition at σ ′

c = 0, similar to the single-species even-offspring
BARW for d > d ′

c, but with critical exponents ν = 1/d, z = 2, α = d/2 and β = 1 = zνα
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[148, 149]. The situation for q = 1 is thus qualitatively different from any multi-species
generalization, and cannot be accessed, say, by means of a 1/q expansion.

Triplet and higher-order generalizations of BARW. Invoking similar arguments as above for
k = 3, i.e., the triplet annihilation 3A → 0 coupled to branching processes, one would
expect DP critical behaviour at a phase transition with σc > 0 for any mmod3 = 1, 2.
For m = 3, 6, . . . , however, special critical scenarios might emerge, but limited to mere
logarithmic corrections, since dc = 1 in this case [149]. Simulations, however, indicate that
such higher-order BARW processes may display even richer phase diagrams [9].

Fission/annihilation or the pair contact process with diffusion (PCPD). One may expect
novel critical behaviour for active to absorbing state transitions if there is no first-order
process present at all. This occurs if the branching reaction competing with A + A → (0, A)

is replaced with A + A → (n + 2)A, termed fission/annihilation reactions in [23], but now
generally known as PCPD [24]. Without any restrictions on the local particle density, or,
in the lattice version, on the site occupation numbers, the density obviously diverges in the
active phase, whereas the inactive, absorbing state is governed by the power laws of the
pair annihilation/coagulation process [23]. By introducing site occupation restrictions or,
alternatively, by adding triplet annihilation processes, the active state density becomes finite,
and the phase transition continuous. In a field-theoretic representation, one must also take
into account the infinitely many additional fission processes that are generated by fluctuations.
Following [129], one may construct the field theory action for the restricted model version,
whence upon expanding the ensuing exponentials, see (77), one arrives at a renormalizable
action. Its RG analysis however leads to runaway RG trajectories, indicating that this action
cannot represent the proper effective field theory for the PCPD critical point [25]. Since
Monte Carlo simulation data for this process are governed by long crossover regimes, the
identification and characterization of the PCPD universality class remain to date an intriguing
open issue [24].

6.6. Boundaries

In equilibrium critical phenomena it is well known that, close to boundaries, the critical
behaviour can be different from that in the bulk (see [152, 153] for comprehensive reviews).
As we will see, a similar situation holds in the case of non-equilibrium reaction–diffusion
systems (see also the review in [154]). Depending on the values of the boundary and bulk
reaction terms, various types of boundary critical behaviour are possible. For example, if the
boundary reaction terms ensure that the boundary, independent of the bulk, is active, while
the bulk is critical, then we have the so-called extraordinary transition. Clearly, by varying
the boundary/bulk reaction rates three other boundary transitions are possible: the ordinary
transition (bulk critical, boundary inactive), the special transition (both bulk and boundary
critical, a multicritical point) and the surface transition (boundary critical, bulk inactive).
Defining r and rs as the deviations of the bulk and boundary from criticality, respectively,
a schematic boundary phase diagram is shown in figure 10. In this review, for reasons of
brevity, we will concentrate on the case of DP with a planar boundary [155–157]. Other cases
(A + A → ∅ with a boundary and boundary BARW) will be dealt with more briefly.
Boundary directed percolation. In this section, we will focus on the ordinary transition in
boundary DP. The mean-field theory for this case was worked out in [157], while the field
theory was analysed to one-loop order in [155].

As we have discussed earlier, the field theory for bulk DP is described by the action (76).
Consider now the effect of a semi-infinite geometry {x = (x‖, z), 0 � z < ∞}, bounded by a
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Figure 10. Schematic mean-field phase diagram for boundary DP. The transitions are labelled by
O = ordinary, E = extraordinary, S = surface, and Sp = special.

plane at z = 0. The complete action for bulk and boundary is then given by S = Seff + Sbd,
where

Sbd =
∫

dd−1x

∫
dtDrs s̄sss, (124)

with the definitions ss = s(x‖, z = 0, t) and s̄s = s̄(x‖, z = 0, t). This boundary term is the
most relevant interaction consistent with the symmetries of the problem, and which respects
the absorbing state criterion. Power counting indicates that the boundary coupling has scaling
dimension [rs] ∼ κ , and is therefore relevant. The presence of the wall at z = 0 enforces the
boundary condition

∂zs|z=0 = rsss . (125)

This condition guarantees that a boundary term of the form s̄∂zs is not required, even though
it is marginal according to power counting arguments.

Since [rs] ∼ κ the only possible fixed points of the renormalized coupling are 	sR
→ 0

or ±∞. Here we focus on the case rsR → ∞, corresponding to the ordinary transition. At
this fixed point, the propagator in the presence of a boundary G0s can be written entirely in
terms of the bulk propagator G0:

G0s(x‖, z, z′, t) = G0(x‖, z, z′, t) − G0(x‖, z,−z′, t). (126)

Due to the above boundary condition, which implies that G0s(x‖, z, z′, t)|z=0 = 0, we see that
the appropriate boundary fields for the ordinary transition are not ss, s̄s , but rather s⊥ = ∂zs|z=0,
and s̄⊥ = ∂zs̄|z=0. For example, in order to compute the order parameter exponent β1 at the
boundary, defined by sR(z = 0, r) ∼ |τR|β1(τR < 0), we must investigate how s⊥ = ∂zs|z=0

scales. In mean-field theory, straightforward dimensional analysis yields β1 = 3/2 [157]. Of
course, to go beyond this simple mean-field picture and to incorporate fluctuations, we must
now employ the machinery of the field-theoretic RG.

Because of the presence of the surface, we expect to find new divergences which are
entirely localized at the surface. These divergences must be absorbed into new renormalization
constants, in addition to those necessary for renormalization of the bulk terms. At the ordinary
transition, the new divergences can be absorbed by means of an additional surface field
renormalization, yielding the renormalized fields:

s⊥R
= Z0Z

1/2
s s⊥, s̄⊥R

= Z0Z
1/2
s s̄⊥. (127)

Note that the same factor Z0 enters both renormalized surface fields, similar to the bulk field
renormalization. The fact that one independent boundary renormalization is required translates
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into the existence of one independent boundary exponent, which we can take to be β1, defined
above.

Consider now the connected renormalized correlation function G
(N,M)
R , composed of

N{s, s̄} fields and M {s⊥, s̄⊥} fields. The renormalization group equation then reads (excepting
the case N = 0,M = 2 for which there is an additional renormalization)(

κ
∂

∂κ
− N + M

2
ζs − Mζ0 + ζDDR

∂

∂DR

+ ζτ τR

∂

∂τR

+ βv(vR)
∂

∂vR

)
G

(N,M)
R = 0, (128)

with definitions (91)–(94) and ζ0 = κ∂κ ln Z0. Solving the above equation at the bulk fixed
point using the method of characteristics, combined with dimensional analysis, yields

G
(N,M)
R ({x, t},DR, τR, κ, v∗

R) ∼ |τR|(N+M)β+Mν(1−η0)Ĝ(N,M)

({
κx

|τR|−ν
,

κ2DRt

|τR|−zν

})
. (129)

With ε = 4 − d, and defining η0 = ζ0(v
∗
R) = ε/12 + O(ε2) (the value of the ζ0 function at the

bulk fixed point), we see that at the ordinary transition

β1 = β + ν(1 − η0) = 3

2
− 7ε

48
+ O(ε2), (130)

where we have used some results previously derived for bulk DP. The general trend of
the fluctuation correction is consistent with the results of Monte Carlo simulations in two
dimensions [156] and series expansions in d = 1 [158], which give β1 = 1.07(5) and
β1 = 0.733 71(2), respectively. For dIP, an analogous analysis yields the boundary density
exponent β1 = 3/2 − 11ε/84 + O(ε2) [12].

One unsolved mystery in boundary DP concerns the exponent τ1 = zν − β1, governing
the mean cluster lifetime in the presence of a boundary [156]. This exponent has been
conjectured to be equal to unity [159]; series expansions certainly yield a value very close to
this (1.000 14(2)) [158], but there is as yet no explanation (field theoretic or otherwise) as to
why this exponent should assume this value.

Boundaries in other reaction–diffusion systems. Aside from DP, boundaries have been studied
in several other reaction–diffusion systems. BARW (with an even number of offspring) with
a boundary was analysed using field-theoretic and numerical methods in [154, 157, 160]. As
in the bulk case, the study of boundary BARW is complicated by the presence of a second
critical dimension d ′

c which prevents the application of controlled perturbative ε expansions
down to d = 1. Nevertheless some progress could still be made in determining the boundary
BARW phase diagram [157]. The situation is somewhat more complicated than in the case of
DP, not only because the location of the bulk critical point is shifted away from zero branching
rate (for d < d ′

c), but also because the parity symmetry of the bulk can be broken but only
at the boundary. The authors of [157] proposed that the one-dimensional phase diagram for
BARW is rather different from that of mean-field theory: if a symmetry breaking A → 0
process is present on the boundary, then only an ordinary transition is accessible in d = 1;
whereas if such a reaction is absent then only a special transition is possible. Furthermore,
an exact calculation in d = 1 at a particular plane in parameter space allowed the authors of
[157] to derive a relation between the β1 exponents at the ordinary and special transitions. It
would be very interesting to understand this result from a field-theoretic perspective, but until
controlled perturbative expansions down to d = 1 become possible, such an understanding
will probably remain elusive. More details of these results can be found in [154, 157].

Richardson and Kafri [161, 162] analysed the presence of a boundary in the simpler
A + A → 0 reaction. For d � 2, they found a fluctuation-induced density excess develops
at the boundary, and this excess extends into the system diffusively from the boundary. The
(universal) ratio between the boundary and bulk densities was computed to first order in
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ε = 2 − d. Since the only reaction occurring both on the boundary and in the bulk is the
critical A + A → 0 process, this situation corresponds to the special transition.

7. Open problems and future directions

As we have seen, enormous progress has been made over the last decade or so in understanding
fluctuations in reaction–diffusion processes. Many systems are now rather well understood,
thanks to a variety of complementary techniques, including mean-field models, Smoluchowski
approximations, exact solutions, Monte Carlo simulations, as well as the field-theoretic RG
methods we have predominantly covered in this review. However, we again emphasize
the particular importance of RG methods in providing the only proper understanding of
universality. Despite these undoubted successes, we believe that there are still many intriguing
open problems:

• Already for the simple two-species pair annihilation process A + B → 0, field-theoretic
RG methods have not as yet been able to properly analyse the asymptotic properties in
dimensions d < 2 in the case of equal initial densities [21]. Moreover, the standard
bosonic field theory representation appears not to capture the particle species segregation
in multi-species generalizations adequately [108]. A viable description of topological
constraints in one dimension, such as induced by hard-core interactions that prevent
particles passing by each other, within field theory remains a challenge.

• Branching–annihilating random walks (BARW) with an even number of offspring particles
is still poorly understood in d = 1, due to the existence of the second critical dimension
d ′

c [148, 149]. A systematic extension of the one-loop analysis at fixed dimension to
higher orders has not been successfully carried out yet. Ideally one would like to find
a way of circumventing this difficulty, in particular to understand why certain one-loop
results (for the exponent β and the value of d ′

c [85]) appear to be exact, even when the
two-loop corrections are known to be non-zero. Non-perturbative numerical RG methods
might be of considerable value here [150, 151]. There is also an interesting suggestion
for a combined Langevin description of both DP and PC universality classes [163], but
the ensuing field theory has yet to be studied by means of the RG.

• Despite intensive work over recent years, the status of the PCPD [23] is still extremely
unclear. In particular, even such basic questions as the universality class of the transition
remain highly controversial. Since simulations in this model have proved to be very
difficult, due to extremely long crossover times, it appears that only a significant theoretical
advance will settle the issue. However, the derivation of an appropriate effective field
theory remains an unsolved and highly non-trivial task [25]. Other higher-order processes
also appear to display richer behaviour than perhaps naively expected [9].

• Generally, the full classification of scale-invariant behaviour in diffusion-limited reactions
remains a formidable program, especially in multi-species systems; see [8, 9] for an
overview of the current data from computer simulations. To date, really only the many-
species generalizations of the pair annihilation reaction as well as the DP and dIP processes
are satisfactorily understood.

• An important, yet hardly studied and less resolved issue is the effect of disorder in the
reaction rates, especially for active to absorbing state transitions. A straightforward
analysis of DP with random threshold yields runaway RG flows [164], which seem to
indicate that the presence of disorder does not merely change the value of the critical
exponents, but may lead to entirely different physics (see, e.g., [165]). This may in turn
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require the further development of novel tools, e.g., real-space RG treatments directly
aimed at the strong disorder regime [166, 167].

• In contrast with the many theoretical and computational successes, the subject of
fluctuations in reaction–diffusion systems is badly in need of experimental contact. Up
to this point, the impact of the field on actual laboratory (as opposed to computer)
experiments has been very limited. In this context, the example of DP seems especially
relevant. DP has been found to be ubiquitous in theory and simulation, but is still mostly
unobserved in experiments, despite some effort. Ideally, one would like to understand
why this is the case: could it be due to disorder or to the absence of a true absorbing state?

• There are a number of additional extensions of the field-theoretic approach presented here
that could further improve our understanding of reaction–diffusion systems. For example,
Dickman and Vidigal have shown how to use this formalism to obtain the full generating
function for the probability distribution of simple processes [168]; Elgart and Kamenev
have used the field theory mapping to investigate rare event statistics [169]; and Kamenev
has pointed out its relation to the Keldysh formalism for quantum non-equilibrium systems
[170]. Path-integral representations of stochastic reaction–diffusion processes are now
making their way into the mathematical biology literature [171, 172].

We believe that these questions and others will remain the object of active and fruitful research
in the years ahead, and that the continued development of field-theoretic RG methods will
have an important role to play.
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[11] Täuber U C 2003 Advances in Solid State Physics vol 43 ed B Kramer (Berlin: Springer) p 659



Topical Review R129
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[36] Schütz G M 2001 Phase Transitions and Critical Phenomena vol 19 ed C Domb and J L Lebowitz (London:

Academic)
[37] Stinchcombe R 2001 Adv. Phys. 50 431
[38] Lushnikov A A 1986 Sov. Phys.—JETP 64 811
[39] Grynberg M D and Stinchcombe R B 1996 Phys. Rev. Lett. 76 851
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